facebook的maskrcnn-benchmark安装出现command '/usr/local/cuda/bin/nvcc' failed with exit status 1

本文主要是介绍facebook的maskrcnn-benchmark安装出现command '/usr/local/cuda/bin/nvcc' failed with exit status 1,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 问题

在安装maskrcnn-benchmark的时候,需要安装apex,但是一直报错。
问题已经解决了,问题没有备份,这是copy的其他人的。
相似问题:Error “void *” is incompatible with parameter of type "long long *

torch.__version__  =  1.2.0
setup.py:43: UserWarning: Option --pyprof not specified. Not installing PyProf dependencies!warnings.warn("Option --pyprof not specified. Not installing PyProf dependencies!")Compiling cuda extensions with
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2018 NVIDIA Corporation
Built on Tue_Jun_12_23:07:04_CDT_2018
Cuda compilation tools, release 9.2, V9.2.148
from /usr/local/cuda/binrunning install
running bdist_egg
running egg_info
writing apex.egg-info/PKG-INFO
writing dependency_links to apex.egg-info/dependency_links.txt
writing top-level names to apex.egg-info/top_level.txt
reading manifest file 'apex.egg-info/SOURCES.txt'
writing manifest file 'apex.egg-info/SOURCES.txt'
installing library code to build/bdist.linux-x86_64/egg
running install_lib
running build_py
running build_ext
building 'amp_C' extension
/home/john/anaconda3/bin/x86_64-conda_cos6-linux-gnu-cc -DNDEBUG -fwrapv -O2 -Wall -Wstrict-prototypes -march=nocona -mtune=haswell -ftree-vectorize -fPIC -fstack-protector-strong -fno-plt -O2 -ffunction-sections -pipe -DNDEBUG -D_FORTIFY_SOURCE=2 -O2 -fPIC -I/home/john/anaconda3/lib/python3.7/site-packages/torch/include -I/home/john/anaconda3/lib/python3.7/site-packages/torch/include/torch/csrc/api/include -I/home/john/anaconda3/lib/python3.7/site-packages/torch/include/TH -I/home/john/anaconda3/lib/python3.7/site-packages/torch/include/THC -I/usr/local/cuda/include -I/home/john/anaconda3/include/python3.7m -c csrc/amp_C_frontend.cpp -o build/temp.linux-x86_64-3.7/csrc/amp_C_frontend.o -O3 -DVERSION_GE_1_1 -DTORCH_API_INCLUDE_EXTENSION_H -DTORCH_EXTENSION_NAME=amp_C -D_GLIBCXX_USE_CXX11_ABI=0 -std=c++11
cc1plus: warning: command line option '-Wstrict-prototypes' is valid for C/ObjC but not for C++
/usr/local/cuda/bin/nvcc -I/home/john/anaconda3/lib/python3.7/site-packages/torch/include -I/home/john/anaconda3/lib/python3.7/site-packages/torch/include/torch/csrc/api/include -I/home/john/anaconda3/lib/python3.7/site-packages/torch/include/TH -I/home/john/anaconda3/lib/python3.7/site-packages/torch/include/THC -I/usr/local/cuda/include -I/home/john/anaconda3/include/python3.7m -c csrc/multi_tensor_sgd_kernel.cu -o build/temp.linux-x86_64-3.7/csrc/multi_tensor_sgd_kernel.o -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr --compiler-options '-fPIC' -lineinfo -O3 --use_fast_math -DVERSION_GE_1_1 -DTORCH_API_INCLUDE_EXTENSION_H -DTORCH_EXTENSION_NAME=amp_C -D_GLIBCXX_USE_CXX11_ABI=0 -std=c++11
/usr/lib/gcc/x86_64-linux-gnu/5/include/avx512fintrin.h(9220): error: argument of type "const void *" is incompatible with parameter of type "const float *"/usr/lib/gcc/x86_64-linux-gnu/5/include/avx512fintrin.h(9231): error: argument of type "const void *" is incompatible with parameter of type "const float *"/usr/lib/gcc/x86_64-linux-gnu/5/include/avx512fintrin.h(9244): error: argument of type "const void *" is incompatible with parameter of type "const double *"/usr/lib/gcc/x86_64-linux-gnu/5/include/avx512fintrin.h(9255): error: argument of type "const void *" is incompatible with parameter of type "const double *"

2. 官方安装步骤

# first, make sure that your conda is setup properly with the right environment
# for that, check that `which conda`, `which pip` and `which python` points to the
# right path. From a clean conda env, this is what you need to doconda create --name maskrcnn_benchmark -y
conda activate maskrcnn_benchmark# this installs the right pip and dependencies for the fresh python
conda install ipython pip# maskrcnn_benchmark and coco api dependencies
pip install ninja yacs cython matplotlib tqdm opencv-python# follow PyTorch installation in https://pytorch.org/get-started/locally/
# we give the instructions for CUDA 9.0
conda install -c pytorch pytorch-nightly torchvision cudatoolkit=9.0export INSTALL_DIR=$PWD# install pycocotools
cd $INSTALL_DIR
git clone https://github.com/cocodataset/cocoapi.git
cd cocoapi/PythonAPI
python setup.py build_ext install# install apex
cd $INSTALL_DIR
git clone https://github.com/NVIDIA/apex.git
cd apex
python setup.py install --cuda_ext --cpp_ext# install PyTorch Detection
cd $INSTALL_DIR
git clone https://github.com/facebookresearch/maskrcnn-benchmark.git
cd maskrcnn-benchmark# the following will install the lib with
# symbolic links, so that you can modify
# the files if you want and won't need to
# re-build it
python setup.py build developunset INSTALL_DIR# or if you are on macOS
# MACOSX_DEPLOYMENT_TARGET=10.9 CC=clang CXX=clang++ python setup.py build develop

3. 解决方案

将gcc版本换为5.4之后就可以通过了。ubuntu如何安装gcc5.4可参考:
ubuntu16.04安装gcc5.4

4. 测试

在maskrcnn-benchmark/demo下新建一个py文件,copy如下测试代码:

from maskrcnn_benchmark.config import cfg
from predictor import COCODemo
import cv2
import matplotlib.pyplot as plt
from PIL import Image
import requests
from io import BytesIO
import numpy as np config_file = "./configs/caffe2/e2e_mask_rcnn_R_50_FPN_1x_caffe2.yaml"# update the config options with the config file
cfg.merge_from_file(config_file)
# manual override some options
cfg.merge_from_list(["MODEL.DEVICE", "cpu"])coco_demo = COCODemo(cfg,min_image_size=800,confidence_threshold=0.7,
)
# load image and then run prediction
def load(url):"""Given an url of an image, downloads the image andreturns a PIL image"""response = requests.get(url)pil_image = Image.open(BytesIO(response.content)).convert("RGB")# convert to BGR formatimage = np.array(pil_image)[:, :, [2, 1, 0]]return imagedef imshow(img):plt.imshow(img[:, :, [2, 1, 0]])plt.axis("off")plt.show()image = load("http://farm3.staticflickr.com/2469/3915380994_2e611b1779_z.jpg")
imshow(image)
predictions = coco_demo.run_on_opencv_image(image)
imshow(predictions)

在这里插入图片描述

这篇关于facebook的maskrcnn-benchmark安装出现command '/usr/local/cuda/bin/nvcc' failed with exit status 1的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1056936

相关文章

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

SQL Server安装时候没有中文选项的解决方法

《SQLServer安装时候没有中文选项的解决方法》用户安装SQLServer时界面全英文,无中文选项,通过修改安装设置中的国家或地区为中文中国,重启安装程序后界面恢复中文,解决了问题,对SQLSe... 你是不是在安装SQL Server时候发现安装界面和别人不同,并且无论如何都没有中文选项?这个问题也

2025版mysql8.0.41 winx64 手动安装详细教程

《2025版mysql8.0.41winx64手动安装详细教程》本文指导Windows系统下MySQL安装配置,包含解压、设置环境变量、my.ini配置、初始化密码获取、服务安装与手动启动等步骤,... 目录一、下载安装包二、配置环境变量三、安装配置四、启动 mysql 服务,修改密码一、下载安装包安装地

Redis MCP 安装与配置指南

《RedisMCP安装与配置指南》本文将详细介绍如何安装和配置RedisMCP,包括快速启动、源码安装、Docker安装、以及相关的配置参数和环境变量设置,感兴趣的朋友一起看看吧... 目录一、Redis MCP 简介二、安www.chinasem.cn装 Redis MCP 服务2.1 快速启动(推荐)2.

在macOS上安装jenv管理JDK版本的详细步骤

《在macOS上安装jenv管理JDK版本的详细步骤》jEnv是一个命令行工具,正如它的官网所宣称的那样,它是来让你忘记怎么配置JAVA_HOME环境变量的神队友,:本文主要介绍在macOS上安装... 目录前言安装 jenv添加 JDK 版本到 jenv切换 JDK 版本总结前言China编程在开发 Java

Linux下在线安装启动VNC教程

《Linux下在线安装启动VNC教程》本文指导在CentOS7上在线安装VNC,包含安装、配置密码、启动/停止、清理重启步骤及注意事项,强调需安装VNC桌面以避免黑屏,并解决端口冲突和目录权限问题... 目录描述安装VNC安装 VNC 桌面可能遇到的问题总结描js述linux中的VNC就类似于Window

虚拟机Centos7安装MySQL数据库实践

《虚拟机Centos7安装MySQL数据库实践》用户分享在虚拟机安装MySQL的全过程及常见问题解决方案,包括处理GPG密钥、修改密码策略、配置远程访问权限及防火墙设置,最终通过关闭防火墙和停止Net... 目录安装mysql数据库下载wget命令下载MySQL安装包安装MySQL安装MySQL服务安装完成

JAVA中安装多个JDK的方法

《JAVA中安装多个JDK的方法》文章介绍了在Windows系统上安装多个JDK版本的方法,包括下载、安装路径修改、环境变量配置(JAVA_HOME和Path),并说明如何通过调整JAVA_HOME在... 首先去oracle官网下载好两个版本不同的jdk(需要登录Oracle账号,没有可以免费注册)下载完

Java JDK1.8 安装和环境配置教程详解

《JavaJDK1.8安装和环境配置教程详解》文章简要介绍了JDK1.8的安装流程,包括官网下载对应系统版本、安装时选择非系统盘路径、配置JAVA_HOME、CLASSPATH和Path环境变量,... 目录1.下载JDK2.安装JDK3.配置环境变量4.检验JDK官网下载地址:Java Downloads