【池化方法】——strip pooling

2024-06-13 08:38
文章标签 方法 strip 池化 pooling

本文主要是介绍【池化方法】——strip pooling,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载自:AI算法修炼营
论文链接:https://arxiv.org/abs/2003.13328v1
代码链接:https://github.com/Andrew-Qibin/SPNet

1. 前言

提高卷积神经网络中远程依赖关系建模能力的一种方法是采用self-attention机制或non-local模块。然而,它们会消耗大量内存。

具体文章可以关注:视觉注意力机制:self-attention机制与non-local模块。对于non-local模块计算量大的问题的改进方法,可以关注文章:non-local模块如何改进?来看CCNet、AAN。

其他的远程上下文建模方法包括:

  • 空洞卷积,其目的是在不引入额外参数的情况下扩大卷积神经网络的感受野;

  • 全局/金字塔池化,通过结合不同池化核大小的池化层,为图像提供全局信息。

然而,空洞卷积和池化操作都是在正方形卷积中输入特征图并进行卷积运算。这限制了它们在捕获广泛存在于现实场景中的各向异性的上下文上的灵活性。

例如,在某些情况下,目标对象可能具有长条形结构(如图1b中的草地)或离散分布(如图1a中的柱子)。使用大的方形池窗口不能很好地解决这个问题,因为它将不可避免地合并来自无关区域的污染信息。

在这里插入图片描述

图1:图中说明了长条形池化和空间池化在场景解析方面的不同工作方式。从上到下分别为:条纹池化;传统的空间池池化;只使用传统池化的结果 ;考虑条纹池化的结果。如上图所示,与传统的空间池化(绿色网格)相比,条纹池化具有条带形的池化核(红色网格),因此可以捕获离散分布区域(黄色边框)之间的远距离依赖关系。

为了更有效地捕获长依赖关系,本文在空间池化层扩大卷积神经网络感受野和捕获上下文信息的基础上,提出了条形池化(strip pooling)的概念。

作为全局池化的替代方案,条纹池化有两个优点:

  • 沿着一个空间维度部署一个长条状的池化核形状,因此能够捕获孤立区域的长距离关系,如图1(a)和1©的第一行所示部分所示。

  • 其他空间维度上保持较窄的内核形状,便于捕获局部上下文,防止不相关区域干扰标签预测

在网络中使用这种长而窄的池内核,可以使语义分割网络能够同时聚合全局和局部上下文信息。这是与传统的从固定的正方形区域收集上下文的池化有本质的不同。

2. 具体方法

基于条纹池化的想法,作者提出了两种即插即用的池化模块 — Strip Pooling Module (SPM) 和 Mixed Pooling module (MPM)。

2.1、SPM(Strip pooling)

SPM由两条路径组成,它们分别侧重于沿着水平和垂直空间两个维度捕获远程上下文。
在这里插入图片描述

图中的条纹池化,实际上和普通池化方法没有区别,就是把池化核(长条形区域)所对应的特征图上位置的像素值求平均

主要流程:

  • 输入一个特征图,这里实际上为C×H×W,为了方便讲解图中只画了一个通道。C个通道的特征图输入处理原理与这里所示的一个通道操作一模一样。

  • 输入的特征图经过水平和竖直条纹池化后变为H×1和1×W,对池化核内的元素值求平均,并以该值作为池化输出值。

  • 随后经过卷积核为3的1D卷积对两个输出feature map分别沿着左右和上下进行扩容,扩容后两个特征图尺寸相同,对扩容后的特征图对应相同位置求和得到H×W的特征图。

  • 之后通过1×1的卷积与sigmoid处理后与原输入图对应像素相乘得到了输出结果。

在上面的过程中,输出张量中的每个位置都与输入张量中的各种位置建立了关系。例如,在上图中,输出张量中以黑框为界的正方形与所有与它具有相同水平或垂直坐标的位置相连(被红色和紫色边框包围)。因此,通过多次重复上述聚合过程,可以在整个场景中构建长期依赖关系。此外,得益于element-wise乘法操作,该SPM也可以被视为一种视觉注意力机制。(其实,这个操作与CCNet思路类似,大家可以参考视觉注意力机制系列文章进行对比)

SPM可以直接应用于任何预先训练的骨干网络,而无需从无到有地进行训练。与全局平均池化相比,条纹池化考虑的是较长但较窄的范围,而不是整个特征图,避免了在相距较远的位置之间建立不必要的连接。与需要大量计算来建立每对位置之间关系的基于注意力的模块(no-local )相比,SPM是轻量级的,可以很容易地嵌入到任何构建块中,从而提高捕获远程空间依赖关系和利用通道间依赖项的能力。

这篇关于【池化方法】——strip pooling的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1056806

相关文章

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

JavaScript中的高级调试方法全攻略指南

《JavaScript中的高级调试方法全攻略指南》什么是高级JavaScript调试技巧,它比console.log有何优势,如何使用断点调试定位问题,通过本文,我们将深入解答这些问题,带您从理论到实... 目录观点与案例结合观点1观点2观点3观点4观点5高级调试技巧详解实战案例断点调试:定位变量错误性能分

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

504 Gateway Timeout网关超时的根源及完美解决方法

《504GatewayTimeout网关超时的根源及完美解决方法》在日常开发和运维过程中,504GatewayTimeout错误是常见的网络问题之一,尤其是在使用反向代理(如Nginx)或... 目录引言为什么会出现 504 错误?1. 探索 504 Gateway Timeout 错误的根源 1.1 后端

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

python 线程池顺序执行的方法实现

《python线程池顺序执行的方法实现》在Python中,线程池默认是并发执行任务的,但若需要实现任务的顺序执行,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋... 目录方案一:强制单线程(伪顺序执行)方案二:按提交顺序获取结果方案三:任务间依赖控制方案四:队列顺序消

SpringBoot通过main方法启动web项目实践

《SpringBoot通过main方法启动web项目实践》SpringBoot通过SpringApplication.run()启动Web项目,自动推断应用类型,加载初始化器与监听器,配置Spring... 目录1. 启动入口:SpringApplication.run()2. SpringApplicat

使用Java读取本地文件并转换为MultipartFile对象的方法

《使用Java读取本地文件并转换为MultipartFile对象的方法》在许多JavaWeb应用中,我们经常会遇到将本地文件上传至服务器或其他系统的需求,在这种场景下,MultipartFile对象非... 目录1. 基本需求2. 自定义 MultipartFile 类3. 实现代码4. 代码解析5. 自定