深度学习每周学习总结N1(one-hot 编码案例)

2024-06-13 08:28

本文主要是介绍深度学习每周学习总结N1(one-hot 编码案例),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊 | 接辅导、项目定制

数据链接
提取码:c949

–来自百度网盘超级会员V5的分享

目录

    • 总结:
    • 1. 中文文本One-Hot编码示例
      • 代码解析
    • 2.直接使用词袋模型(CountVectorizer)实现独热编码

总结:

之前有学习过文本预处理的环节,对文本处理的主要方式有以下三种:

1:词袋模型(one-hot编码)

2:TF-IDF

3:Word2Vec(词向量)

详细介绍及中英文分词详见pytorch文本分类(一):文本预处理

本期主要介绍one-hot编码示例流程(词汇表 -> 文本序列 -> One-hot编码)手撕模式 + 直接调用现成的词袋模型(CountVectorizer)

1. 中文文本One-Hot编码示例

import torch
import torch.nn.functional as F
import jieba# 示例中文文本
texts = ['你好,最近怎么样?','我过的很好,谢谢!','再见。']# 使用结巴分词进行分词
tokenized_texts = [list(jieba.cut(text)) for text in texts] # [['你好', ',', '最近', '怎么样', '?'], ['我', '过', '的', '很好', ',', '谢谢', '!'], ['再见', '。']]# 构建词汇表
word_index = {}
index_word = {}
# 将所有分词结果中的单词去重,建立 word_index 和 index_word 两个字典,分别存储单词到索引和索引到单词的映射
for i,word in enumerate(set(word for text in tokenized_texts for word in text)):word_index[word] = iindex_word[i] = word# 将文本转化为整数序列
sequences = [[word_index[word] for word in text] for text in tokenized_texts] # 获取词汇表大小
vocab_size = len(word_index)# 将整数序列转化为ont-hot编码
one_hot_results = torch.zeros(len(texts),vocab_size)
for i,seq in enumerate(sequences):one_hot_results[i,seq] = 1# 打印结果
print("词汇表: \n",word_index)
print("文本: \n",texts)
print("分词结果: \n",tokenized_texts)
print("文本序列: \n",sequences)
print("One-Hot编码: \n",one_hot_results)
词汇表: {'。': 0, '的': 1, '谢谢': 2, '你好': 3, '再见': 4, '我过': 5, '!': 6, '很': 7, '?': 8, '好': 9, '怎么样': 10, '最近': 11, ',': 12}
文本: ['你好,最近怎么样?', '我过的很好,谢谢!', '再见。']
分词结果: [['你好', ',', '最近', '怎么样', '?'], ['我过', '的', '很', '好', ',', '谢谢', '!'], ['再见', '。']]
文本序列: [[3, 12, 11, 10, 8], [5, 1, 7, 9, 12, 2, 6], [4, 0]]
One-Hot编码: tensor([[0., 0., 0., 1., 0., 0., 0., 0., 1., 0., 1., 1., 1.],[0., 1., 1., 0., 0., 1., 1., 1., 0., 1., 0., 0., 1.],[1., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.]])

让我们逐步解析这段代码,并说明每一步操作后数据的结构和状态。

代码解析

  1. 导入必要的库

    import torch
    import torch.nn.functional as F
    import jieba
    
  2. 示例中文文本

    texts = ['你好,最近怎么样?', '我过的很好,谢谢!', '再见。']
    

    texts 是一个包含三条中文文本的列表。

  3. 使用结巴分词进行分词

    tokenized_texts = [list(jieba.cut(text)) for text in texts]
    

    操作:对每条文本进行分词,结果存储在 tokenized_texts 列表中。

    结果

    tokenized_texts = [['你好', ',', '最近', '怎么样', '?'], ['我', '过', '的', '很好', ',', '谢谢', '!'], ['再见', '。']]
    
  4. 构建词汇表

    word_index = {}
    index_word = {}
    for i, word in enumerate(set(word for text in tokenized_texts for word in text)):word_index[word] = iindex_word[i] = word
    

    操作:将所有分词结果中的单词去重,建立 word_indexindex_word 两个字典,分别存储单词到索引和索引到单词的映射。

    结果

    word_index = {'最近': 0, '谢谢': 1, '?': 2, '的': 3, ',': 4, '怎么样': 5, '很好': 6, '我': 7, '再见': 8, '你好': 9, '过': 10, '。': 11, '!': 12}
    index_word = {0: '最近', 1: '谢谢', 2: '?', 3: '的', 4: ',', 5: '怎么样', 6: '很好', 7: '我', 8: '再见', 9: '你好', 10: '过', 11: '。', 12: '!'}
    
  5. 将文本转化为整数序列

    sequences = [[word_index[word] for word in text] for text in tokenized_texts]
    

    操作:将每条分词后的文本转化为对应的整数序列。

    结果

    sequences = [[9, 4, 0, 5, 2], [7, 10, 3, 6, 4, 1, 12], [8, 11]]
    
  6. 获取词汇表大小

    vocab_size = len(word_index)
    

    操作:计算词汇表的大小。

    结果

    vocab_size = 13
    
  7. 将整数序列转化为one-hot编码

    one_hot_results = torch.zeros(len(texts), vocab_size)
    for i, seq in enumerate(sequences):one_hot_results[i, seq] = 1
    

    操作:初始化一个全零的二维张量 one_hot_results,然后根据每条文本的整数序列,将对应位置置为1,生成one-hot编码。

    结果

    tensor([[0., 0., 1., 0., 1., 1., 0., 0., 0., 1., 0., 0., 0.],[0., 1., 0., 1., 1., 0., 1., 1., 0., 0., 1., 0., 1.],[0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 1., 0.]])
    
  8. 打印结果

    print("词汇表: \n", word_index)
    print("文本: \n", texts)
    print("分词结果: \n", tokenized_texts)
    print("文本序列: \n", sequences)
    print("One-Hot编码: \n", one_hot_results)
    

    操作:打印出词汇表、原文本、分词结果、文本序列和one-hot编码。

  9. 总结
    这段代码的核心功能是将中文文本分词后,生成相应的整数序列,再转换为one-hot编码。每一步操作后数据的状态如下:

  • texts:包含原始文本的列表。
  • tokenized_texts:包含分词后的文本列表。
  • word_indexindex_word:分别存储单词到索引和索引到单词的映射字典。
  • sequences:包含整数序列的列表。
  • one_hot_results:包含one-hot编码的二维张量。

2.直接使用词袋模型(CountVectorizer)实现独热编码

import torch
import torch.nn.functional as F
import jieba
from sklearn.feature_extraction.text import CountVectorizer
import re# 示例中文文本
texts = ['你好,最近怎么样?','我过的很好,谢谢!','再见。']# 使用结巴分词进行分词,并移除标点符号 
tokenized_texts = [' '.join(re.findall(r'\w+', ' '.join(jieba.cut(text)))) for text in texts] # 结果:['你好 最近 怎么样', '我 过 的 很好 谢谢', '再见']"""
注意此处代码和上述代码不一致的原因是:CountVectorizer 期望接收的输入是一个字符串列表,但我们提供了一个分词后的列表列表。
为了使用 CountVectorizer 并确保标点符号被移除,我们需要确保输入是字符串而不是分词后的列表。
"""# cv = CountVectorizer() # 创建词袋数据结构
cv = CountVectorizer(token_pattern=r"(?u)\b[\u4e00-\u9fa5a-zA-Z]+\b")  # 仅匹配中文字符和英文单词cv_fit = cv.fit_transform(tokenized_texts)  # CountVectorizer 用于将文本转换为词袋模型。fit_transform 方法同时完成拟合模型和将文本转化为特征向量的操作。# 将词频矩阵转换为 tensor
tensor_result = torch.from_numpy(cv_fit.toarray()).float()print("文本: \n",texts)
print("分词结果: \n",tokenized_texts)
print("列表形式的字典: \n",cv.get_feature_names_out())    #列表形式呈现文章生成的词典,和鲸线上需要使用get_feature_names()
print("字典: \n",cv.vocabulary_)       #字典形式呈现,key:词,value:词id
print("token计数矩阵:\n",cv_fit.toarray()) #.toarray() 将结果转化为稀疏矩阵 一行对应着一句话,一列对应一个词,列index对应词id
print("词频矩阵的 tensor 表示:\n", tensor_result)
文本: ['你好,最近怎么样?', '我过的很好,谢谢!', '再见。']
分词结果: ['你好 最近 怎么样', '我过 的 很 好 谢谢', '再见']
列表形式的字典: ['你好' '再见' '好' '很' '怎么样' '我过' '最近' '的' '谢谢']
字典: {'你好': 0, '最近': 6, '怎么样': 4, '我过': 5, '的': 7, '很': 3, '好': 2, '谢谢': 8, '再见': 1}
token计数矩阵:[[1 0 0 0 1 0 1 0 0][0 0 1 1 0 1 0 1 1][0 1 0 0 0 0 0 0 0]]
词频矩阵的 tensor 表示:tensor([[1., 0., 0., 0., 1., 0., 1., 0., 0.],[0., 0., 1., 1., 0., 1., 0., 1., 1.],[0., 1., 0., 0., 0., 0., 0., 0., 0.]])

这篇关于深度学习每周学习总结N1(one-hot 编码案例)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1056778

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Java中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例解析

《Java中的分布式系统开发基于Zookeeper与Dubbo的应用案例解析》本文将通过实际案例,带你走进基于Zookeeper与Dubbo的分布式系统开发,本文通过实例代码给大家介绍的非常详... 目录Java 中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例一、分布式系统中的挑战二

Java 中的 equals 和 hashCode 方法关系与正确重写实践案例

《Java中的equals和hashCode方法关系与正确重写实践案例》在Java中,equals和hashCode方法是Object类的核心方法,广泛用于对象比较和哈希集合(如HashMa... 目录一、背景与需求分析1.1 equals 和 hashCode 的背景1.2 需求分析1.3 技术挑战1.4

Python动态处理文件编码的完整指南

《Python动态处理文件编码的完整指南》在Python文件处理的高级应用中,我们经常会遇到需要动态处理文件编码的场景,本文将深入探讨Python中动态处理文件编码的技术,有需要的小伙伴可以了解下... 目录引言一、理解python的文件编码体系1.1 Python的IO层次结构1.2 编码问题的常见场景二

Java中实现对象的拷贝案例讲解

《Java中实现对象的拷贝案例讲解》Java对象拷贝分为浅拷贝(复制值及引用地址)和深拷贝(递归复制所有引用对象),常用方法包括Object.clone()、序列化及JSON转换,需处理循环引用问题,... 目录对象的拷贝简介浅拷贝和深拷贝浅拷贝深拷贝深拷贝和循环引用总结对象的拷贝简介对象的拷贝,把一个