【光流】——liteflownet3论文详析与推理代码浅析

2024-06-13 08:08

本文主要是介绍【光流】——liteflownet3论文详析与推理代码浅析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

光流,liteflownet
code from:pytorch-liteflownet3

1. 前言

深度学习方法在解决光流估计问题方面取得了巨大的成功。成功的关键在于使用成本量和从粗到细的流推理。然而,当图像中存在部分遮挡或均匀区域时,匹配问题就变得不适态。这将导致成本卷包含异常值,并影响来自它的流解码。此外,从粗到细的流推理还需要精确的流初始化。模糊的对应关系会产生错误的流场,并影响后续层次上的流场推断。在本文中,我们介绍了由两个专门模块组成的LiteFlowNet3深度网络来解决上述挑战。(1)我们通过在流解码之前的自适应调制来修改每个成本向量,从而改善了成本体积中的异常值问题(2),我们通过探索局部光流的一致性,进一步提高了光流的精度。为此,每一种不准确的光流都通过一种新的流场扭曲而被附近位置的精确光流所取代

就是对光流中cost volume模块做了创新,2.提出了一种新的warp,对异常点的光流进行了处理

2. 网络

在这里插入图片描述

2.0 Flow Field Deformation

直观地说,我们将每个不精确的光流替换为来自具有相似特征向量的附近位置的精确光流。通过根据计算得到的位移场对流场进行元翘曲(类似于光流,但位移场不再代表对应关系)来实现替换。我们通过使用来自自相关成本体积的置信引导解码来计算位移场。

2.1 encoder

encoder 部分和前面一样,liteflownet系列激活函数都使用leakyrelu

Features((netOne): Sequential((0): Conv2d(3, 32, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3))(1): LeakyReLU(negative_slope=0.1))(netTwo): Sequential((0): Conv2d(32, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))(1): LeakyReLU(negative_slope=0.1)(2): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(3): LeakyReLU(negative_slope=0.1)(4): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(5): LeakyReLU(negative_slope=0.1))(netThr): Sequential((0): Conv2d(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))(1): LeakyReLU(negative_slope=0.1)(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(3): LeakyReLU(negative_slope=0.1))(netFou): Sequential((0): Conv2d(64, 96, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))(1): LeakyReLU(negative_slope=0.1)(2): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(3): LeakyReLU(negative_slope=0.1))(netFiv): Sequential((0): Conv2d(96, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))(1): LeakyReLU(negative_slope=0.1))(netSix): Sequential((0): Conv2d(128, 192, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))(1): LeakyReLU(negative_slope=0.1))
)

2.2 基础的cost volume

在这里插入图片描述
得到cost volume结果后,然后使用卷积在C上进行光流解码。所得到的光流场 u : Ω → R 2 u:\Omega\rightarrow R^{2} u:ΩR2提供了从I1到I2的密集对应关系

2.3 可调制cost volume

在这里插入图片描述
在这里插入图片描述
⊗ \otimes ⊕ \oplus 分别表示像素级的乘法和加法,通过已经两个运算对原来的cost volume矩阵进行自适应调整。 α 和 β \alpha和\beta αβ同C具有同样的维度,二者由下图计算而来。
在这里插入图片描述
由M(x), F1, cost volume三者生成 α 和 β \alpha和\beta αβ M ( x ) M(x) M(x)表示在x处具有精确光流的概率。 M ( x ) M(x) M(x)最后的激活函数用sigmoid用于将其值约束为[0,1]。我们使用具有地面真实标签Mgt(x)的L2损失来训练置信图 M ( x ) M(x) M(x)
在这里插入图片描述
不知道这里的u(x)表示什么

2.4 cost volume到流解码

不同的流场解码方式,模型参数与精度的比较。
在这里插入图片描述
在这里插入图片描述
第一种就直接解码,第二种相当于多个feature concat之后+conv,第三种相当于加入了attention模块,像素级attention。 可以看到第三种方式最优。

2.5 新的流场变形(warp)

在从粗到细的流估计中,来自前一个解码器的流估计被用作后续解码器的流初始化。这非常要求之前的估计是准确的。错误的光流被传播到随后的水平,并影响流的推断。单独使用成本体积调制并无法解决这个问题。我们探索了局部流动一致性[29,33],并提出使用 m e t a − w a r p i n g meta-warping metawarping来提高光流的精度。
在这里插入图片描述
在这里插入图片描述
就是求一个 d ( x ) d(x) d(x),用其他点的光流来替换当前点的光流。d(x)怎么求呢?
特征F1求一个自相关矩阵,再光流置信度M(x)一起解码得到d(x)
在这里插入图片描述

3. 实验

3.1 训练

为了进行公平的比较,我们使用与文献[6,10,11,12,13,19,24,27,28,31]中其他光流cnn相同的训练集。我们使用与LiteFlowNet2[11]相同的训练协议(包括数据增强和批处理大小)。我们首先使用阶段级训练程序[11]在飞行椅数据集[6]上训练LiteFlowNet2。然后,我们将全新的模块、成本体积变形和流场调制集成到LiteFlowNet2中,形成LiteFlowNet3。新引入的CNN模块的训练学习率为1e-4,而其他组件的训练学习率降低为2e-5,进行300K迭代。然后,我们在飞行事物3D[20]上微调整个网络,学习速率为5e-6,可进行500K迭代。最后,我们分别在Sintel[4]和KITTI[22]的混合物上对LiteFlowNet3进行微调,训练集为KITTI,学习速率为600K迭代5e-5。这两个模型也以降低学习率和迭代与LiteFlowNet2相同
在这里插入图片描述

总结

  • cost volume中引入了attention
  • warp中引入了dx,对已经得到的光流进行修正
  • 后续附上代码浅析

这篇关于【光流】——liteflownet3论文详析与推理代码浅析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1056737

相关文章

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

深入解析 Java Future 类及代码示例

《深入解析JavaFuture类及代码示例》JavaFuture是java.util.concurrent包中用于表示异步计算结果的核心接口,下面给大家介绍JavaFuture类及实例代码,感兴... 目录一、Future 类概述二、核心工作机制代码示例执行流程2. 状态机模型3. 核心方法解析行为总结:三

python获取cmd环境变量值的实现代码

《python获取cmd环境变量值的实现代码》:本文主要介绍在Python中获取命令行(cmd)环境变量的值,可以使用标准库中的os模块,需要的朋友可以参考下... 前言全局说明在执行py过程中,总要使用到系统环境变量一、说明1.1 环境:Windows 11 家庭版 24H2 26100.4061

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

Python使用Code2flow将代码转化为流程图的操作教程

《Python使用Code2flow将代码转化为流程图的操作教程》Code2flow是一款开源工具,能够将代码自动转换为流程图,该工具对于代码审查、调试和理解大型代码库非常有用,在这篇博客中,我们将深... 目录引言1nVflRA、为什么选择 Code2flow?2、安装 Code2flow3、基本功能演示

IIS 7.0 及更高版本中的 FTP 状态代码

《IIS7.0及更高版本中的FTP状态代码》本文介绍IIS7.0中的FTP状态代码,方便大家在使用iis中发现ftp的问题... 简介尝试使用 FTP 访问运行 Internet Information Services (IIS) 7.0 或更高版本的服务器上的内容时,IIS 将返回指示响应状态的数字代

MySQL 添加索引5种方式示例详解(实用sql代码)

《MySQL添加索引5种方式示例详解(实用sql代码)》在MySQL数据库中添加索引可以帮助提高查询性能,尤其是在数据量大的表中,下面给大家分享MySQL添加索引5种方式示例详解(实用sql代码),... 在mysql数据库中添加索引可以帮助提高查询性能,尤其是在数据量大的表中。索引可以在创建表时定义,也可

使用C#删除Excel表格中的重复行数据的代码详解

《使用C#删除Excel表格中的重复行数据的代码详解》重复行是指在Excel表格中完全相同的多行数据,删除这些重复行至关重要,因为它们不仅会干扰数据分析,还可能导致错误的决策和结论,所以本文给大家介绍... 目录简介使用工具C# 删除Excel工作表中的重复行语法工作原理实现代码C# 删除指定Excel单元