【转载】浮点数运算的定点数编程

2024-06-13 07:48

本文主要是介绍【转载】浮点数运算的定点数编程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

我们使用的处理器一般情况下,要么直接支持硬件的浮点运算,比如某些带有FPU的器件,要么就只支持定点运算,此时对浮点数的处理需要通过编译器来完成。在支持硬件浮点处理的器件上,对浮点运算的编程最快捷的方法就是直接使用浮点类型,比如单精度的float来完成。但是在很多情况下,限于成本、物料等因素,可供我们使用的只有一个定点处理器时,直接使用float类型进行浮点类型的运算会使得编译器产生大量的代码来完成一段看起来十分简单的浮点数学运算,造成的后果是程序的执行时间显著加长,且其占用的资源量也会成倍地增加,这就涉及到了如何在定点处理器上对浮点运算进行高效处理的问题。

本文引用地址: http://www.eepw.com.cn/article/263475.htm

  既然是定点处理器,那么其对定点数,或者说字面意义上的“整数”进行处理的效率就会比它处理浮点类型的运算要高的多。所以在定点处理器上,我们使用定点的整数来代表一个浮点数,并规定整数位数和小数位数,从而方便地对定点数和浮点数进行转换。以一个32位的定点数为例,假设转换因子为Q,即32位中小数的位数为Q,整数位数则为31-Q(有符号数的情况),则定点数与浮点数的换算关系为:

  定点数=浮点数×2^Q

  例如,浮点数-2.0转换到Q为30的定点数时,结果为:

  定点数=-2×2^30=-2147483648

  32位有符号数的表示范围是:-2147483648到2147483647。如果我们把有符号定点数的最大值2147483647转换为Q为30对应的浮点数,则结果为:

  浮点数2147483647/2^30=1.999999999

  从上面的两个计算例子中也可以看出,在Q30格式的情况下,最大的浮点数只能表示到1.999999999,如果我们想把浮点数2.0转换为Q30的定点数,则产生了溢出,即造成了1e-9的截断误差。在此我们列出Q0到Q30对应的范围和分辨率如下表所示:

  如果你嫌自己计算麻烦的话,可以借助Matlab的命令来求取它们的转换,例如,在Matlab的命令窗口中输入:

  q = quantizer('fixed', 'ceil', 'saturate', [32 30]);

  FixedNum=bin2dec(num2bin(q,1.999999999));

  回车之后就可以看到1.999999999转成Q30之后的定点数了。

  弄清楚了单个浮点数和定点数之间的转换关系,接下来就需要了解一下两个定点数所代表的浮点数进行运算时,是如何转换的了。根据乘法的结合律、分配率,浮点数转换之后的定点数是可以直接运算的,例如:

  1. 不同Q格式的转换

  设有定点数Fixed1=Float1*2^Q1,如果把它用为Q2这个不同精度/表示范围的定点数来表示,则有Fixed2=Float1*2^Q2。所以不同的Q格式直接的转换为:

  Fixed2=Fixed1*2^Q2/2^Q1=Fixed1*2^(Q2-Q1)

  因为Fixed1、Fixed2都是定点数,所以在C编程的情况下,我们可以使用高效的左移、右移操作来完成这个乘以2^(Q2-Q1)的操作。

  2. 两个相同Q格式的定点数:

  Fixed1=Float1*2^Q

  Fixed2=Float2*2^Q

  则加法操作为:

  Float1+Float2=Fixed1/2^Q+Fixed/2^Q=(Fixed1+Fixed2)/2^Q

  对于上述的加法操作,如果定点数的和Fixed1+Fixed2超过了32位整数的极值,则会发生溢出现象,造成结果的不正确,此时我们只能先损失一倍的精度,把Float1、Float2的Q值变为Q-1.

  乘法操作为:

  Float1*Float2=Fixed1/2^Q*Fixed/2^Q= Fixed1*Fixed2/2^(2Q)

  同样的道理,如果Fixed1*Fixed2之后的定点数超过了32位整数的极值,则我们也需要提前对它们进行一下折算,变换一下它们的Q值。这就涉及到对结果的一个预估问题,也是定点编程不如浮点编程简单、高效的不足之一。

  3. 两个不同Q格式的定点数:

  Fixed1=Float1*2^Q1

  Fixed2=Float2*2^Q2

  运算的规则是结合了前面的两种情况,只不过多了额外的转换工作:要么把其中的一个Q1格式的定点数先转换为另一个Q2格式,要么把它们都转换为一个中间值Q3格式的定点数,然后再进行运算。

这篇关于【转载】浮点数运算的定点数编程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1056701

相关文章

Python异步编程之await与asyncio基本用法详解

《Python异步编程之await与asyncio基本用法详解》在Python中,await和asyncio是异步编程的核心工具,用于高效处理I/O密集型任务(如网络请求、文件读写、数据库操作等),接... 目录一、核心概念二、使用场景三、基本用法1. 定义协程2. 运行协程3. 并发执行多个任务四、关键

AOP编程的基本概念与idea编辑器的配合体验过程

《AOP编程的基本概念与idea编辑器的配合体验过程》文章简要介绍了AOP基础概念,包括Before/Around通知、PointCut切入点、Advice通知体、JoinPoint连接点等,说明它们... 目录BeforeAroundAdvise — 通知PointCut — 切入点Acpect — 切面

C#异步编程ConfigureAwait的使用小结

《C#异步编程ConfigureAwait的使用小结》本文介绍了异步编程在GUI和服务器端应用的优势,详细的介绍了async和await的关键作用,通过实例解析了在UI线程正确使用await.Conf... 异步编程是并发的一种形式,它有两大好处:对于面向终端用户的GUI程序,提高了响应能力对于服务器端应

C# async await 异步编程实现机制详解

《C#asyncawait异步编程实现机制详解》async/await是C#5.0引入的语法糖,它基于**状态机(StateMachine)**模式实现,将异步方法转换为编译器生成的状态机类,本... 目录一、async/await 异步编程实现机制1.1 核心概念1.2 编译器转换过程1.3 关键组件解析

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

C/C++中OpenCV 矩阵运算的实现

《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元

Python 异步编程 asyncio简介及基本用法

《Python异步编程asyncio简介及基本用法》asyncio是Python的一个库,用于编写并发代码,使用协程、任务和Futures来处理I/O密集型和高延迟操作,本文给大家介绍Python... 目录1、asyncio是什么IO密集型任务特征2、怎么用1、基本用法2、关键字 async1、async

Java并发编程之如何优雅关闭钩子Shutdown Hook

《Java并发编程之如何优雅关闭钩子ShutdownHook》这篇文章主要为大家详细介绍了Java如何实现优雅关闭钩子ShutdownHook,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起... 目录关闭钩子简介关闭钩子应用场景数据库连接实战演示使用关闭钩子的注意事项开源框架中的关闭钩子机制1.

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的