DSP28335模块配置模板系列——EQEP模块配置模板

2024-06-12 22:04

本文主要是介绍DSP28335模块配置模板系列——EQEP模块配置模板,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、配置步骤

1.关闭EQEP模块并清除计数器和中断标志

    //停止EQEP模块EQep1Regs.QEPCTL.bit.QPEN = 0;//清除计数器和中断标志EQep1Regs.QPOSCNT = 0;EQep1Regs.QCLR.all = 0xFFFF;

2.配置EQEP模块输入属性

    EQep1Regs.QDECCTL.bit.QSRC=0; //设定eQep的计数模式为正交模式EQep1Regs.QDECCTL.bit.SWAP=0; //QEPA和QEPB信号不交换EQep1Regs.QDECCTL.bit.QAP=0;  //QEPA信号不取反EQep1Regs.QDECCTL.bit.QBP=0;  //QEPB信号不取反EQep1Regs.QDECCTL.bit.QIP=0;  //QIP信号不取反EQep1Regs.QEPCTL.bit.FREE_SOFT=2;//仿真控制位:位置计数器不受影响

3.配置位置计数器的运行模式、初始化方式以及最大值

  EQep1Regs.QEPCTL.bit.PCRM=00; //设定PCRM=00,即QPOSCNT在每次Index脉冲都复位EQep1Regs.QEPCTL.bit.IEI=2;     //在QEPI上升沿初始化位置计数器EQep1Regs.QPOSMAX = 0xFFFFFFFF;

4.配置UTE单元的时间、使能以及中断使能

    EQep1Regs.QEPCTL.bit.QCLM=1;//QEP捕捉锁存模式设置为单位时间事件发生时将QPOSCNT的值锁存到QPOSLAT中EQep1Regs.QUPRD=1500000; //当SYSCLKOUT=150MHz时,设定Unit Timer溢出频率为100HzEQep2Regs.QEINT.bit.UTO=1;//使能UTO中断EQep1Regs.QEPCTL.bit.UTE=1;   //使能UTE

5.软件初始化位置计数器并开启EQEP模块

    EQep1Regs.QEPCTL.bit.SWI = 1;EQep1Regs.QEPCTL.bit.QPEN = 1;

6.UTO中断触发EQEP1中断的服务函数——用于测速

interrupt void EQEP1_ISR()
{motor.Now_position=EQep2Regs.QPOSLAT;motor.DirectionQep=EQep2Regs.QEPSTS.bit.QDF;if (motor.DirectionQep)    //正向旋转,增计数{if(motor.Last_position>motor.Now_position)motor.Speed=(8000-motor.Last_position+motor.Now_position)/8000.0*100*60;    //0.01根据UTO的时间周期计算elsemotor.Speed=(motor.Now_position-motor.Last_position)/8000.0*100*60;     //0.01根据UTO的时间周期计算}else{if(motor.Last_position>=motor.Now_position)motor.Speed=(motor.Last_position-motor.Now_position)/8000.0*100*60; //0.01根据UTO的时间周期计算elsemotor.Speed=(8000-motor.Now_position+motor.Last_position)/8000.0*100*60;    //0.01根据UTO的时间周期计算}motor.Last_position=motor.Now_position;
}

二、配置模板

        常用的电机编码器输出信号为正交的A、B脉冲信号以及记录参考位置的Z索引脉冲信号,通过DSP的EQEP模块可以将电机编码器的信号解码,通过计算得到电机转子的位置以及速度,下面的DSP程序的EQEP配置模式为:正交计数模式、位置计数器在索引脉冲到来时复位为0、采用UTE单位时间单元,设置单位时间为10ms,10ms触发EQEP1中断,在中断函数内通过计算10ms间隔的位置计数器的差值,通过相应的运算得到电机的转速。

#include "DSP2833x_Device.h"     // DSP2833x Headerfile Include File
#include "DSP2833x_Examples.h"   // DSP2833x Examples Include Fileinterrupt void EQEP1_ISR();
struct Motor_Para
{int DirectionQep;           //电机旋转方向float Speed;float Now_position;         //变量:当前位置float Last_position;           //变量:上一次位置
} motor;
void main ()
{InitSysCtrl();Init_Variables();Init_EQEP1_Gpio();Init_EQEP1();DINT;InitPieCtrl();IER = 0x0000;IFR = 0x0000;InitPieVectTable();EALLOW;  // This is needed to write to EALLOW protected registersPieVectTable.EQEP1_INT = &EQEP1_ISR;EDIS;    // This is needed to disable write to EALLOW protected registersPieCtrlRegs.PIEIER5.bit.INTx2 = 1;IER |= M_INT5;EINT;   // Enable Global interrupt INTMERTM;   // Enable Global realtime interrupt DBGMwhile(1){}
}
interrupt void EQEP1_ISR()
{motor.Now_position=EQep2Regs.QPOSLAT;motor.DirectionQep=EQep2Regs.QEPSTS.bit.QDF;if (motor.DirectionQep)    //正向旋转,增计数{if(motor.Last_position>motor.Now_position)motor.Speed=(8000-motor.Last_position+motor.Now_position)/8000.0*100*60;    //0.01根据UTO的时间周期计算elsemotor.Speed=(motor.Now_position-motor.Last_position)/8000.0*100*60;     //0.01根据UTO的时间周期计算}else{if(motor.Last_position>=motor.Now_position)motor.Speed=(motor.Last_position-motor.Now_position)/8000.0*100*60; //0.01根据UTO的时间周期计算elsemotor.Speed=(8000-motor.Now_position+motor.Last_position)/8000.0*100*60;    //0.01根据UTO的时间周期计算}motor.Last_position=motor.Now_position;//       P_A=((EQep2Regs.QPOSCNT-390+444)%444)*20/444;
//       P_B=((EQep2Regs.QPOSCNT-390-111+444)%444)*20/444;
//       P_C=((EQep2Regs.QPOSCNT-390-222+444)%444)*20/444;
//       P_D=((EQep2Regs.QPOSCNT-390-333+444)%444)*20/444;
//
//       P_E=((EQep2Regs.QPOSCNT-335+444)%444)*20/444;
//       P_F=((EQep2Regs.QPOSCNT-335-111+444)%444)*20/444;
//       P_G=((EQep2Regs.QPOSCNT-335-222+444)%444)*20/444;
//       P_H=((EQep2Regs.QPOSCNT-335-333+444)%444)*20/444;
}
void Init_Variables(void)
{motor.Now_position=0;motor.Last_position=0;motor.Speed=0;
}
void Init_EQEP1_Gpio()
{EALLOW;GpioCtrlRegs.GPBPUD.bit.GPIO50 = 0; // Enable pull-up on GPIO50 (EQEP1A)GpioCtrlRegs.GPBPUD.bit.GPIO51 = 0; // Enable pull-up on GPIO51 (EQEP1B)GpioCtrlRegs.GPBPUD.bit.GPIO53 = 0; // Enable pull-up on GPIO53 (EQEP1I)GpioCtrlRegs.GPBQSEL2.bit.GPIO50 = 0; // Sync to SYSCLKOUT GPIO50 (EQEP1A)GpioCtrlRegs.GPBQSEL2.bit.GPIO51 = 0; // Sync to SYSCLKOUT GPIO51 (EQEP1B)GpioCtrlRegs.GPBQSEL2.bit.GPIO53 = 0; // Sync to SYSCLKOUT GPIO53 (EQEP1I)GpioCtrlRegs.GPBMUX2.bit.GPIO50=1; //QEPAGpioCtrlRegs.GPBMUX2.bit.GPIO51=1; //QEPBGpioCtrlRegs.GPBMUX2.bit.GPIO53=1; //QEPIEDIS;
}
void Init_EQEP1()
{//停止EQEP模块EQep1Regs.QEPCTL.bit.QPEN = 0;//清除计数器和中断标志EQep1Regs.QPOSCNT = 0;EQep1Regs.QCLR.all = 0xFFFF;//配置输入属性EQep1Regs.QDECCTL.bit.QSRC=0; //设定eQep的计数模式为正交模式EQep1Regs.QDECCTL.bit.SWAP=0; //QEPA和QEPB信号不交换EQep1Regs.QDECCTL.bit.QAP=0;  //QEPA信号不取反EQep1Regs.QDECCTL.bit.QBP=0;  //QEPB信号不取反EQep1Regs.QDECCTL.bit.QIP=0;  //QIP信号不取反EQep1Regs.QEPCTL.bit.FREE_SOFT=2;//仿真控制位:位置计数器不受影响//配置位置计数器运行模式、初始化方式、最大值EQep1Regs.QEPCTL.bit.PCRM=00; //设定PCRM=00,即QPOSCNT在每次Index脉冲都复位EQep1Regs.QEPCTL.bit.IEI=2;     //在QEPI上升沿初始化位置计数器EQep1Regs.QPOSMAX = 0xFFFFFFFF;//QEP捕捉锁存模式设置为单位时间事件发生时将QPOSCNT的值锁存到QPOSLAT中EQep1Regs.QEPCTL.bit.QCLM=1;//配置UTE单元时间、中断使能、使能EQep1Regs.QUPRD=1500000; //当SYSCLKOUT=150MHz时,设定Unit Timer溢出频率为100HzEQep2Regs.QEINT.bit.UTO=1;//使能UTO中断EQep1Regs.QEPCTL.bit.UTE=1;   //使能UTE//若要用QCAP单元进行精确的速度测量,可以配置QCAP单元
//    EQep1Regs.QCAPCTL.bit.UPPS = 5;    // 1/32 预分频器
//    EQep1Regs.QCAPCTL.bit.CCPS = 6;    // 1/64 预分频器
//    EQep1Regs.QCAPCTL.bit.CEN=1;  //使能eQEP的捕获功能//开启EQEP模块,并用软件初始化位置计数器EQep1Regs.QEPCTL.bit.SWI = 1;EQep1Regs.QEPCTL.bit.QPEN = 1;
}

这篇关于DSP28335模块配置模板系列——EQEP模块配置模板的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1055455

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Debian系和Redhat系防火墙配置方式

《Debian系和Redhat系防火墙配置方式》文章对比了Debian系UFW和Redhat系Firewalld防火墙的安装、启用禁用、端口管理、规则查看及注意事项,强调SSH端口需开放、规则持久化,... 目录Debian系UFW防火墙1. 安装2. 启用与禁用3. 基本命令4. 注意事项5. 示例配置R

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Redis MCP 安装与配置指南

《RedisMCP安装与配置指南》本文将详细介绍如何安装和配置RedisMCP,包括快速启动、源码安装、Docker安装、以及相关的配置参数和环境变量设置,感兴趣的朋友一起看看吧... 目录一、Redis MCP 简介二、安www.chinasem.cn装 Redis MCP 服务2.1 快速启动(推荐)2.

Spring Boot配置和使用两个数据源的实现步骤

《SpringBoot配置和使用两个数据源的实现步骤》本文详解SpringBoot配置双数据源方法,包含配置文件设置、Bean创建、事务管理器配置及@Qualifier注解使用,强调主数据源标记、代... 目录Spring Boot配置和使用两个数据源技术背景实现步骤1. 配置数据源信息2. 创建数据源Be

SpringBoot集成EasyPoi实现Excel模板导出成PDF文件

《SpringBoot集成EasyPoi实现Excel模板导出成PDF文件》在日常工作中,我们经常需要将数据导出成Excel表格或PDF文件,本文将介绍如何在SpringBoot项目中集成EasyPo... 目录前言摘要简介源代码解析应用场景案例优缺点分析类代码方法介绍测试用例小结前言在日常工作中,我们经

Spring Boot Maven 插件如何构建可执行 JAR 的核心配置

《SpringBootMaven插件如何构建可执行JAR的核心配置》SpringBoot核心Maven插件,用于生成可执行JAR/WAR,内置服务器简化部署,支持热部署、多环境配置及依赖管理... 目录前言一、插件的核心功能与目标1.1 插件的定位1.2 插件的 Goals(目标)1.3 插件定位1.4 核

RabbitMQ消息总线方式刷新配置服务全过程

《RabbitMQ消息总线方式刷新配置服务全过程》SpringCloudBus通过消息总线与MQ实现微服务配置统一刷新,结合GitWebhooks自动触发更新,避免手动重启,提升效率与可靠性,适用于配... 目录前言介绍环境准备代码示例测试验证总结前言介绍在微服务架构中,为了更方便的向微服务实例广播消息,

nginx 负载均衡配置及如何解决重复登录问题

《nginx负载均衡配置及如何解决重复登录问题》文章详解Nginx源码安装与Docker部署,介绍四层/七层代理区别及负载均衡策略,通过ip_hash解决重复登录问题,对nginx负载均衡配置及如何... 目录一:源码安装:1.配置编译参数2.编译3.编译安装 二,四层代理和七层代理区别1.二者混合使用举例

Java JDK1.8 安装和环境配置教程详解

《JavaJDK1.8安装和环境配置教程详解》文章简要介绍了JDK1.8的安装流程,包括官网下载对应系统版本、安装时选择非系统盘路径、配置JAVA_HOME、CLASSPATH和Path环境变量,... 目录1.下载JDK2.安装JDK3.配置环境变量4.检验JDK官网下载地址:Java Downloads