模式识别六--感知器的实现

2024-06-12 20:38

本文主要是介绍模式识别六--感知器的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  文章转自:http://www.kancloud.cn/digest/prandmethod/102848

        在之前的模式识别研究中,判别函数J(.)的参数是已知的,即假设概率密度函数的参数形式已知。本节不考虑概率密度函数的确切形式,使用非参数化的方法来求解判别函数。由于线性判别函数具有许多优良的特性,因此这里我们只考虑以下形式的判别函数:它们或者是x的各个分量的线性函数,或者是关于以x为自变量的某些函数的线性函数。在设计感知器之前,需要明确以下几个基本概念:

一、判别函数:是指由x的各个分量的线性组合而成的函数:

这里写图片描述

若样本有c类,则存在c个判别函数,对具有这里写图片描述形式的判别函数的一个两类线性分类器来说,要求实现以下判定规则:

这里写图片描述

方程g(x)=0定义了一个判定面,它把两个类的点分开来,这个平面被称为超平面,如下图所示。

这里写图片描述

二、广义线性判别函数

线性判别函数g(x)又可写成以下形式:

这里写图片描述

其中系数wi是权向量w的分量。通过加入另外的项(w的各对分量之间的乘积),得到二次判别函数:

这里写图片描述

因为这里写图片描述,不失一般性,可以假设这里写图片描述。这样,二次判别函数拥有更多的系数来产生复杂的分隔面。此时g(x)=0定义的分隔面是一个二阶曲面。

若继续加入更高次的项,就可以得到多项式判别函数,这可看作对某一判别函数g(x)做级数展开,然后取其截尾逼近,此时广义线性判别函数可写成:

这里写图片描述

或:

这里写图片描述

这里y通常被成为“增广特征向量”(augmented feature vector),类似的,a被称为“增广权向量”,分别可写成:

这里写图片描述

这个从d维x空间到d+1维y空间的映射虽然在数学上几乎没有变化,但十分有用。虽然增加了一个常量,但在x空间上的所有样本间距离在变换后保持不变,得到的y向量都在d维的自空间中,也就是x空间本身。通过这种映射,可以将寻找权向量w和权阈值w0的问题简化为寻找一个简单的权向量a。

三、样本线性可分

即在特征空间中可以用一个或多个线性分界面正确无误地分开若干类样本;对于两类样本点w1和w2,其样本点集合表示为:这里写图片描述 ,使用一个判别函数这里写图片描述来划分w1和w2,需要用这些样本集合来确定判别函数的权向量a,可采用增广样本向量y,即存在合适的增广权向量a,使得:

这里写图片描述

则称样本是线性可分的。如下图中第一个图就是线性可分,而第二个图则不可分。所有满足条件的权向量称为解向量。

这里写图片描述

这里写图片描述

通常对解区限制:引入余量b,要求解向量满足:

这里写图片描述

余量b的加入在一定程度上可防止优化算法收敛到解区的边界。

四、感知器准则函数

这里考虑构造线性不等式这里写图片描述 的准则函数的问题,令准则函数J(.)为:

这里写图片描述

其中Y是被权向量a错分的样本集。当且仅当JP(a) = min JP(a) = 0 时,a是解向量。这就是感知器(Perceptron)准则函数。

1.基本的感知器设计

感知器准则函数的最小化可以使用梯度下降迭代算法求解:

这里写图片描述

其中,k为迭代次数,η为调整的步长。即下一次迭代的权向量是把当前时刻的权向量向目标函数的负梯度方向调整一个修正量。

这里写图片描述

即在每一步迭代时把错分的样本按照某个系数叠加到权向量上。这样就得到了感知算法。

2.批处理感知器算法

这里写图片描述

3.固定增量感知器算法

通常情况,一次将所有错误样本进行修正不是效率最高的做法,更常用是每次只修正一个样本或一批样本的固定增量法:

这里写图片描述

五、收敛性分析:

只要训练样本集是线性可分的,对于任意的初值 a(1) ,经过有限次迭代运算,算法必定收敛。而当样本线性不可分时,感知器算法无法收敛。

总结:感知器是最简单可以“学习”的机器,是解决线性可分的最基本方法。也是很多复杂算法的基础。感知器的算法的推广有很多种,如带裕量的变增量感知器、批处理裕量松弛算法、单样本裕量松弛算法等等。

以下是批处理感知器算法与固定增量感知器算法实现的MATLAB代码,并给出四组数据以供测试:

% 批处理感知器算法
function BatchPerceptron(w1, w2)figure;
plot(w1(:,1),w1(:,2),'ro');
hold on;
grid on;
plot(w2(:,1),w2(:,2),'b+');% 对所有训练样本求增广特征向量y
one = ones(10,1);
y1 = [one w1];
y2 = [one w2];
w12 = [y1; -y2]; % 增广样本规范化
y = zeros(size(w12,1),1); % 错分样本集y初始为零矩阵
% 初始化参数
a = [0 0 0]; % [0 0 0];
Eta = 1; 
time = 0; % 收敛步数
while any(y<=0)for i=1:size(y,1)y(i) = a * w12(i,:)';end;a = a + sum(w12(find(y<=0),:));%修正向量atime = time + 1;%收敛步数if (time >= 300)break;end
end;
if (time >= 300)disp('目标函数在规定的最大迭代次数内无法收敛');disp(['批处理感知器算法的解矢量a为: ',num2str(a)]);
else 
disp(['批处理感知器算法收敛时解矢量a为: ',num2str(a)]);
disp(['批处理感知器算法收敛步数k为: ',num2str(time)]);
end%找到样本在坐标中的集中区域,以便于打印样本坐标图
xmin = min(min(w1(:,1)),min(w2(:,1)));
xmax = max(max(w1(:,1)),max(w2(:,1)));
xindex = xmin-1:(xmax-xmin)/100:xmax+1;
yindex = -a(2)*xindex/a(3)-a(1)/a(3);
plot(xindex,yindex);
title('批处理感知器算法实现两类数据的分类');
% 固定增量感知器算法
function FixedIncrementPerceptron(w1, w2)[n, d] = size(w1);
figure;
plot(w1(:,1),w1(:,2),'ro');
hold on;
grid on;
plot(w2(:,1),w2(:,2),'b+');% 对所有训练样本求增广特征向量y
one = ones(10,1);
y1 = [one w1];
y2 = [one w2];
w12 = [y1; -y2]; % 增广样本规范化
y = zeros(size(w12,1),1); % 错分样本集y初始为零矩阵
% 初始化参数
a = [0 0 0];
Eta = 1; 
% k = 0;
time = 0; % 收敛的步数
yk = zeros(10,3);y = a * w12';
while sum(y<=0)>0
%     for i=1:size(y,1)
%         y(i) = a * w12(i,:)';
%     end;y = a * w12';rej=[];for i=1:2*n    %这个循环计算a(K+1) = a(k) + sum {yj被错误分类} y(j)if y(i)<=0a = a + w12(i,:);rej = [rej i];endend%    fprintf('after iter %d, a = %g, %g\n', time, a);% rejtime = time + 1;if ((size(rej) == 0) | (time >= 300))break;end
end;
if (time >= 300)disp('目标函数在规定的最大迭代次数内无法收敛');disp(['固定增量感知器算法的解矢量a为: ',num2str(a)]);
else 
disp(['固定增量感知器算法收敛时解矢量a为: ',num2str(a)]);
disp(['固定增量感知器算法收敛步数kt为: ',num2str(time)]);
end
%找到样本在坐标中的集中区域,以便于打印样本坐标图
xmin = min(min(w1(:,1)),min(w2(:,1)));
xmax = max(max(w1(:,1)),max(w2(:,1)));
xindex = xmin-1:(xmax-xmin)/100:xmax+1;
% yindex = -a(2)*xindex/a(3)-a(1)/a(3);
yindex = -a(2)*xindex/a(3) - a(1)/a(3);
plot(xindex,yindex);
title('固定增量感知器算法实现两类数据的分类');
close all;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 感知器实验
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%w1 = [ 0.1  1.1;...6.8  7.1;...-3.5 -4.1;...2.0  2.7;...4.1  2.8;...3.1  5.0;...-0.8 -1.3;...0.9  1.2;...5.0  6.4;...3.9  4.0];w2 = [ 7.1  4.2;...-1.4 -4.3;...4.5  0.0;...6.3  1.6;...4.2  1.9;...1.4 -3.2;...2.4 -4.0;...2.5 -6.1;...8.4  3.7;...4.1 -2.2];w3 = [-3.0 -2.9;...0.54  8.7;...2.9  2.1;...-0.1  5.2;...-4.0  2.2;...-1.3  3.7;...-3.4  6.2;...-4.1  3.4;...-5.1  1.6;...1.9  5.1];w4 = [-2.0 -8.4;...-8.9  0.2;...-4.2 -7.7;...-8.5 -3.2;...-6.7 -4.0;...-0.5 -9.2;...-5.3 -6.7;...-8.7 -6.4;...-7.1 -9.7;...-8.0 -6.3];BatchPerceptron(w1, w2);FixedIncrementPerceptron(w1, w3);

这篇关于模式识别六--感知器的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1055276

相关文章

Spring Boot整合Redis注解实现增删改查功能(Redis注解使用)

《SpringBoot整合Redis注解实现增删改查功能(Redis注解使用)》文章介绍了如何使用SpringBoot整合Redis注解实现增删改查功能,包括配置、实体类、Repository、Se... 目录配置Redis连接定义实体类创建Repository接口增删改查操作示例插入数据查询数据删除数据更

Java Lettuce 客户端入门到生产的实现步骤

《JavaLettuce客户端入门到生产的实现步骤》本文主要介绍了JavaLettuce客户端入门到生产的实现步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录1 安装依赖MavenGradle2 最小化连接示例3 核心特性速览4 生产环境配置建议5 常见问题

linux ssh如何实现增加访问端口

《linuxssh如何实现增加访问端口》Linux中SSH默认使用22端口,为了增强安全性或满足特定需求,可以通过修改SSH配置来增加或更改SSH访问端口,具体步骤包括修改SSH配置文件、增加或修改... 目录1. 修改 SSH 配置文件2. 增加或修改端口3. 保存并退出编辑器4. 更新防火墙规则使用uf

Java 的ArrayList集合底层实现与最佳实践

《Java的ArrayList集合底层实现与最佳实践》本文主要介绍了Java的ArrayList集合类的核心概念、底层实现、关键成员变量、初始化机制、容量演变、扩容机制、性能分析、核心方法源码解析、... 目录1. 核心概念与底层实现1.1 ArrayList 的本质1.1.1 底层数据结构JDK 1.7

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符