Linux时间子系统(一):gettimeofday和clock_gettime实现分析

2024-06-12 12:28

本文主要是介绍Linux时间子系统(一):gettimeofday和clock_gettime实现分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. Linux用户态获取时间的函数

a. 秒级别的时间函数:time和stime

time和stime函数的定义如下:

#include <time.h>time_t time(time_t *t);int stime(time_t *t);

        time函数返回了当前时间点到linux epoch的秒数(内核中timekeeper模块保存了这个值,timekeeper->xtime_sec)。stime是设定当前时间点到linux epoch的秒数。对于linux kernel,设定时间的进程必须拥有CAP_SYS_TIME的权利,否则会失败。

b. 微秒级别的时间函数:gettimeofday和settimeofday

#include <sys/time.h>int gettimeofday(struct timeval *tv, struct timezone *tz);int settimeofday(const struct timeval *tv, const struct timezone *tz);

        这两个函数和上一小节秒数的函数类似,只不过时间精度可以达到微秒级别。gettimeofday函数可以获取从linux epoch到当前时间点的秒数以及微秒数

        显然,sys_gettimeofday和sys_settimeofday这两个系统调用是用来支持上面两个函数功能的,值得一提的是:这些系统调用在新的POSIX标准中 gettimeofday和settimeofday接口函数被标注为obsolescent,取而代之的是clock_gettime和clock_settime接口函数

        实际上上面的说法并不完全准确,在《Linux多线程服务端编程》一书5.1节中提到过,在x86-64的Linux上,gettimeofday不是系统调用,不会陷入内核。这种说法也有问题,因为gettimeofday确实是个系统调用,但是linux的vdso(virtual dynamic shared object)机制帮我们做到了在调用这些系统调用时不陷入内核,从而提高了性能。我们后面分析代码时会看到。

c. 纳秒级别的时间函数:clock_gettime和clock_settime

#include <time.h>int clock_getres(clockid_t clk_id, struct timespec *res);int clock_gettime(clockid_t clk_id, struct timespec *tp);int clock_settime(clockid_t clk_id, const struct timespec *tp);

        如果不是clk_id这个参数,clock_gettime和clock_settime基本上是不用解释的,其概念和gettimeofday和settimeofday接口函数是完全类似的,除了精度是纳秒。Linux 5.10 定义了如下的clkid

/** The IDs of the various system clocks (for POSIX.1b interval timers):*/
#define CLOCK_REALTIME			0
#define CLOCK_MONOTONIC			1
#define CLOCK_PROCESS_CPUTIME_ID	2
#define CLOCK_THREAD_CPUTIME_ID		3
#define CLOCK_MONOTONIC_RAW		4
#define CLOCK_REALTIME_COARSE		5
#define CLOCK_MONOTONIC_COARSE		6
#define CLOCK_BOOTTIME			7
#define CLOCK_REALTIME_ALARM		8
#define CLOCK_BOOTTIME_ALARM		9

        但是以上ID并没有包含全部的clock类型,始终类型,以及时间与时钟源的关系,我们后面再来分析

2. gettimeofday和clock_gettime的实现

a. gettimeofday的实现

        我们先看gettimeofday的实现,使用gettimeofday的示例代码如下:
 

#include <sys/time.h>
#include <stdio.h>
#include <unistd.h>int main(int argc, char* argv[])
{struct timeval tv_begin, tv_end;gettimeofday(&tv_begin, NULL);printf("start tv_sec %ld tv_usec %ld\n", tv_begin.tv_sec, tv_begin.tv_usec);usleep(1000);gettimeofday(&tv_end, NULL);printf("end tv_sec %ld tv_usec %ld\n", tv_end.tv_sec, tv_end.tv_usec);
}

在Linux kernel中,kernel/time/time.c目录下有如下代码:

SYSCALL_DEFINE2(gettimeofday, struct __kernel_old_timeval __user *, tv,struct timezone __user *, tz)
{if (likely(tv != NULL)) {struct timespec64 ts;ktime_get_real_ts64(&ts);if (put_user(ts.tv_sec, &tv->tv_sec) ||put_user(ts.tv_nsec / 1000, &tv->tv_usec))return -EFAULT;}if (unlikely(tz != NULL)) {if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))return -EFAULT;}return 0;
}

如果不看gettimeofday的C库实现,肯定会认为gettimeofday就是直接使用上面的系统调用,实际上我一开始就是这么认为的。我们去glibc/musl看一下,这个函数在musl 1.2.3中的定义如下

int gettimeofday(struct timeval *restrict tv, void *restrict tz)
{struct timespec ts;if (!tv) return 0;clock_gettime(CLOCK_REALTIME, &ts);tv->tv_sec = ts.tv_sec;tv->tv_usec = (int)ts.tv_nsec / 1000;return 0;
}

gettimeofday并没有直接使用系统调用,格式调用了clock_gettime,并且clockid直接填写了CLOCK_REALTIME,那么接下来我们就要分析clock_gettime函数了。

b. clock_gettime的实现

再看musl 1.2.3中的clock_gettime的代码

int __clock_gettime(clockid_t clk, struct timespec *ts)
{int r;#ifdef VDSO_CGT_SYMint (*f)(clockid_t, struct timespec *) =(int (*)(clockid_t, struct timespec *))vdso_func;if (f) {r = f(clk, ts);if (!r) return r;if (r == -EINVAL) return __syscall_ret(r);/* Fall through on errors other than EINVAL. Some buggy* vdso implementations return ENOSYS for clocks they* can't handle, rather than making the syscall. This* also handles the case where cgt_init fails to find* a vdso function to use. */}
#endif#ifdef SYS_clock_gettime64r = -ENOSYS;if (sizeof(time_t) > 4)r = __syscall(SYS_clock_gettime64, clk, ts);if (SYS_clock_gettime == SYS_clock_gettime64 || r!=-ENOSYS)return __syscall_ret(r);long ts32[2];r = __syscall(SYS_clock_gettime, clk, ts32);if (r==-ENOSYS && clk==CLOCK_REALTIME) {r = __syscall(SYS_gettimeofday, ts32, 0);ts32[1] *= 1000;}if (!r) {ts->tv_sec = ts32[0];ts->tv_nsec = ts32[1];return r;}return __syscall_ret(r);
#elser = __syscall(SYS_clock_gettime, clk, ts);if (r == -ENOSYS) {if (clk == CLOCK_REALTIME) {__syscall(SYS_gettimeofday, ts, 0);ts->tv_nsec = (int)ts->tv_nsec * 1000;return 0;}r = -EINVAL;}return __syscall_ret(r);
#endif
}weak_alias(__clock_gettime, clock_gettime);

很明显有2个分支,我们先看第一个分支,包含宏定义VDSO_CGT_SYM,这里不详细介绍vdso了,放在后面单独讲,vdso简而言之就是为了避免系统调用的开销,使用内存映射的办法,将内核数据映射到用户空间。

那么数据是如何更新到vdso数据的呢?在内核的时间更新函数timekeeping_update函数中调用update_vsyscall更新了vdso数据结构

那么clock_gettime是否在所有情况下都能从用户态获取到时间呢,其实并不是,即使在使能了vdso的情况下,也还是有一些场景需要trap进内核,比如访问phc clock的时间。所以内核还是支持正常的系统调用,内核实现如下:

SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,struct __kernel_timespec __user *, tp)
{const struct k_clock *kc = clockid_to_kclock(which_clock);struct timespec64 kernel_tp;int error;if (!kc)return -EINVAL;error = kc->clock_get_timespec(which_clock, &kernel_tp);if (!error && put_timespec64(&kernel_tp, tp))error = -EFAULT;return error;
}

同样,我们可以看到根据clockid的不同可以获取到不同的时间,如下:

static const struct k_clock * const posix_clocks[] = {[CLOCK_REALTIME]		= &clock_realtime,[CLOCK_MONOTONIC]		= &clock_monotonic,[CLOCK_PROCESS_CPUTIME_ID]	= &clock_process,[CLOCK_THREAD_CPUTIME_ID]	= &clock_thread,[CLOCK_MONOTONIC_RAW]		= &clock_monotonic_raw,[CLOCK_REALTIME_COARSE]		= &clock_realtime_coarse,[CLOCK_MONOTONIC_COARSE]	= &clock_monotonic_coarse,[CLOCK_BOOTTIME]		= &clock_boottime,[CLOCK_REALTIME_ALARM]		= &alarm_clock,[CLOCK_BOOTTIME_ALARM]		= &alarm_clock,[CLOCK_TAI]			= &clock_tai,
};

这里的时间的含义是什么,我们获取到的是什么时间,这个问题下面再讨论。

3. 遗留问题

a. vdso的机制:vdso是如何让用户态不必陷入到内核获取到时间的?

b. clock_gettime能够获取到的各类时间有什么不同?

这两个问题后面再讲。

这篇关于Linux时间子系统(一):gettimeofday和clock_gettime实现分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1054212

相关文章

Flutter实现文字镂空效果的详细步骤

《Flutter实现文字镂空效果的详细步骤》:本文主要介绍如何使用Flutter实现文字镂空效果,包括创建基础应用结构、实现自定义绘制器、构建UI界面以及实现颜色选择按钮等步骤,并详细解析了混合模... 目录引言实现原理开始实现步骤1:创建基础应用结构步骤2:创建主屏幕步骤3:实现自定义绘制器步骤4:构建U

SpringBoot中四种AOP实战应用场景及代码实现

《SpringBoot中四种AOP实战应用场景及代码实现》面向切面编程(AOP)是Spring框架的核心功能之一,它通过预编译和运行期动态代理实现程序功能的统一维护,在SpringBoot应用中,AO... 目录引言场景一:日志记录与性能监控业务需求实现方案使用示例扩展:MDC实现请求跟踪场景二:权限控制与

Android实现定时任务的几种方式汇总(附源码)

《Android实现定时任务的几种方式汇总(附源码)》在Android应用中,定时任务(ScheduledTask)的需求几乎无处不在:从定时刷新数据、定时备份、定时推送通知,到夜间静默下载、循环执行... 目录一、项目介绍1. 背景与意义二、相关基础知识与系统约束三、方案一:Handler.postDel

慢sql提前分析预警和动态sql替换-Mybatis-SQL

《慢sql提前分析预警和动态sql替换-Mybatis-SQL》为防止慢SQL问题而开发的MyBatis组件,该组件能够在开发、测试阶段自动分析SQL语句,并在出现慢SQL问题时通过Ducc配置实现动... 目录背景解决思路开源方案调研设计方案详细设计使用方法1、引入依赖jar包2、配置组件XML3、核心配

Java NoClassDefFoundError运行时错误分析解决

《JavaNoClassDefFoundError运行时错误分析解决》在Java开发中,NoClassDefFoundError是一种常见的运行时错误,它通常表明Java虚拟机在尝试加载一个类时未能... 目录前言一、问题分析二、报错原因三、解决思路检查类路径配置检查依赖库检查类文件调试类加载器问题四、常见

windows和Linux使用命令行计算文件的MD5值

《windows和Linux使用命令行计算文件的MD5值》在Windows和Linux系统中,您可以使用命令行(终端或命令提示符)来计算文件的MD5值,文章介绍了在Windows和Linux/macO... 目录在Windows上:在linux或MACOS上:总结在Windows上:可以使用certuti

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Java controller接口出入参时间序列化转换操作方法(两种)

《Javacontroller接口出入参时间序列化转换操作方法(两种)》:本文主要介绍Javacontroller接口出入参时间序列化转换操作方法,本文给大家列举两种简单方法,感兴趣的朋友一起看... 目录方式一、使用注解方式二、统一配置场景:在controller编写的接口,在前后端交互过程中一般都会涉及

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句