利用泽攸科技原位TEM技术揭示真空击穿过程中电场与电极材料相互作用

本文主要是介绍利用泽攸科技原位TEM技术揭示真空击穿过程中电场与电极材料相互作用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在高能物理设备和许多其他设备中,真空击穿(VBD)现象对高能物理设备的性能造成了严重的阻碍,包括真空断路器、X射线源、聚变反应堆以及粒子加速器等。然而由于对导致VBD的机制缺乏足够的科学理解,这些问题至今无法得到缓解。普遍认为,导致等离子体起始的初始蒸汽和离子群是由极端加热引起的原子蒸发产生的,这是由局部场电子发射点进入热失控过程引起的。但是要发生这样的过程,需要假设金属表面上的局部尖锐突起能够实现极高的几何场增强(数百倍),这在实验上尚未观察到,尤其是在金属表面经过前期处理之后。

尽管工业生产的经验表明,金属表面上的吸附物或污染物(如碳化合物等)的扩散可能在极高几何场增强和随后的高电场下电击穿中起着主导作用,但导致这种现象的确切机制尚未被理解,其与VBD条件的相关性也未得到证明。

图片

针对以上问题,西安交通大学电气工程学院孟国栋副教授、成永红教授研究团队与爱沙尼亚塔尔图大学/芬兰赫尔辛基大学Andreas Kyritsakis副教授研究团队利用泽攸科技的原位TEM技术,对涂覆有非晶碳(a-C)层的钨(W)纳米尖端进行了场发射(FE)测量和原位成像,揭示了在特定条件下,FE电流-电压(I-V)曲线突然转变为增强电流状态,暗示了NP的生长。通过有限元分析排除了场诱导塑性变形的替代可能性后,初步将这种现象归因于表面a-C原子的场诱导偏置扩散。

图片

相关研究成果以“In Situ Observation of Field-Induced Nanoprotrusion Growth on a Carbon-Coated Tungsten Nanotip.”为题,发表在《Physical Review Letters》期刊上,DOI: 10.1103/PhysRevLett.132.176201。

图片

图 1. (a) 原位形态表征和场发射测量系统的示意图。(b) 非晶碳涂层的钨纳米尖端和金板阳极的透射电子显微镜(TEM)图像。(c) 在 d3 间隙下进行场发射(FE)测量后,a-C 涂层的钨纳米尖端的 TEM 图像以及相应的纳米突起生长。(d) 纳米尖端和阳极接触的 TEM 图像。图 (d) 中的插图:短路期间的 I-V 曲线,相应的涂层电阻率为约 3.28 × 10^6 Ω·纳米。

研究团队首先对钨(W)纳米尖端进行了精细的电化学蚀刻处理,形成了半径约为20纳米的尖锐尖端,并在其上沉积了非晶碳(a-C)薄膜。在JEOL-2010F TEM的高真空环境下,通过精确调整电极间隙,研究人员能够在原子尺度上观察到纳米尖端的形态演变和场发射特性的实时变化。

图片

图 2. 展示了不同纳米间隙下,非晶碳(a-C)涂层的钨(W)纳米尖端的测量场发射电流-电压(I-V)曲线(点线)。

实验中,研究人员记录了场发射电流-电压(I-V)曲线在不同间隙距离下的演变情况。他们发现,在特定的电场条件下,I-V曲线会突然从低电流状态跃升到高电流状态,这一现象表明了纳米突起的生长。通过对比实验数据和场发射模拟结果,研究人员证实了在W纳米尖端顶部确实形成了NP,并且这一结构的生长与实验中观察到的电流增强现象一致。

图片

图 3.场致纳米突起产生与生长示意图。

为了揭示NP生长的物理机制,研究人员进行了有限元分析(FEA),排除了场诱导塑性变形的可能性。他们提出了一种假设,即表面a-C原子的场诱导偏置扩散可能是导致NP生长的原因。在高电场的作用下,表面原子的迁移势垒被显著改变,导致原子向电场强度更高的区域扩散,从而促进了NP的形成。

此外,研究人员还观察到了NP生长的动态过程,这不仅证实了他们的假设,而且为理解在高电场作用下金属表面的行为提供了新的视角。这项研究不仅增进了我们对真空击穿机制的理解,而且为设计更可靠的高能物理设备提供了重要的科学依据。

图片

本研究中用到的泽攸科技原位STM-TEM电学测量系统

TEM原位解决方案-产品中心-泽攸科技-用精密量测赋能科技创新【官网】 (zeptools.cn) 

这篇关于利用泽攸科技原位TEM技术揭示真空击穿过程中电场与电极材料相互作用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1054183

相关文章

一文解密Python进行监控进程的黑科技

《一文解密Python进行监控进程的黑科技》在计算机系统管理和应用性能优化中,监控进程的CPU、内存和IO使用率是非常重要的任务,下面我们就来讲讲如何Python写一个简单使用的监控进程的工具吧... 目录准备工作监控CPU使用率监控内存使用率监控IO使用率小工具代码整合在计算机系统管理和应用性能优化中,监

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

Spring boot整合dubbo+zookeeper的详细过程

《Springboot整合dubbo+zookeeper的详细过程》本文讲解SpringBoot整合Dubbo与Zookeeper实现API、Provider、Consumer模式,包含依赖配置、... 目录Spring boot整合dubbo+zookeeper1.创建父工程2.父工程引入依赖3.创建ap

Linux下进程的CPU配置与线程绑定过程

《Linux下进程的CPU配置与线程绑定过程》本文介绍Linux系统中基于进程和线程的CPU配置方法,通过taskset命令和pthread库调整亲和力,将进程/线程绑定到特定CPU核心以优化资源分配... 目录1 基于进程的CPU配置1.1 对CPU亲和力的配置1.2 绑定进程到指定CPU核上运行2 基于

Java进程异常故障定位及排查过程

《Java进程异常故障定位及排查过程》:本文主要介绍Java进程异常故障定位及排查过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、故障发现与初步判断1. 监控系统告警2. 日志初步分析二、核心排查工具与步骤1. 进程状态检查2. CPU 飙升问题3. 内存

SpringBoot整合liteflow的详细过程

《SpringBoot整合liteflow的详细过程》:本文主要介绍SpringBoot整合liteflow的详细过程,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋...  liteflow 是什么? 能做什么?总之一句话:能帮你规范写代码逻辑 ,编排并解耦业务逻辑,代码

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

MySQL中的InnoDB单表访问过程

《MySQL中的InnoDB单表访问过程》:本文主要介绍MySQL中的InnoDB单表访问过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、访问类型【1】const【2】ref【3】ref_or_null【4】range【5】index【6】

浏览器插件cursor实现自动注册、续杯的详细过程

《浏览器插件cursor实现自动注册、续杯的详细过程》Cursor简易注册助手脚本通过自动化邮箱填写和验证码获取流程,大大简化了Cursor的注册过程,它不仅提高了注册效率,还通过友好的用户界面和详细... 目录前言功能概述使用方法安装脚本使用流程邮箱输入页面验证码页面实战演示技术实现核心功能实现1. 随机

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左