Fast R-CNN 与 R-CNN的不同之处

2024-06-12 12:04
文章标签 cnn fast

本文主要是介绍Fast R-CNN 与 R-CNN的不同之处,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、Fast R-CNN如何生成候选框特征矩阵

二、 关于正负样本的解释

三、训练样本的候选框  

四、Fast R-CNN网络架构

4.1 分类器

4.2 边界框回归器 


一、Fast R-CNN如何生成候选框特征矩阵

        在R-CNN中,通过SS算法得到2000个候选框,则需要进行2000次正向传播 得到2000个特征 —— 很冗余 ——很多重叠部分计算计算一次就可以。

        在Fast R-CNN中,直接将整张图片送入CNN得到这张图片的特征图,再根 据候选框与原图的关系映射到特征图上,就不需要重复运算了。——大幅度提 升Fast R-CNN的运算速度  

二、 关于正负样本的解释

        在Fast R-CNN网络训练过程中,并不会使用SS算法提供的所有候选框(SS 算法生成大约2000个候选框),只需使用一小部分的数据即可。对于采样数 据,它分为“正样本”和“负样本”。

        正样本:候选框中确实存在所需检测目标(前景)的样本

        负样本:候选框中没有所需检测目标(背景)的样本

为什么要将样本分为正样本和负样本呢?

        假如我们要训练一个猫狗分类器,如果猫的样本数量远大于狗的样本数量 (数据不平衡),网络在预测时会更偏向于“猫”,很明显这样是不对的。如果数 据中全是“猫”的样本, 没有“狗”的样本,那么网络预测几乎一定会出现问题。

        同理,在训练Fast R-CNN时,如果数据中全部都是正样本,那么网络就会 很大概率认为候选区域是所需要检测的目标(可能这个框明明框住的是背景, 但网络仍会认为这个被框住的背景是有用的,是一个前景),这时网络肯定会 出问题。所以数据要分为正样本和负样本。

        在原论文中,对于每一张图片,从2000个候选框中采集64个候选框。这64 个候选框,一部分框的是正样本,一部分框的是负样本。那么正样本是如何定 义的呢?

        只要候选框与真实框(GT)的IoU大于0.5,则认定为正样本,反之认定为 负样本。

三、训练样本的候选框  

原理:

 

        左边图其实是一个经过特征提取的特征图,本身可视化出来也是很抽象 的,这里只是为了方便理解,使用了RGB图像。

        具体实现为:将特征图划分为 7×7 个小块,对其每一小块执行MaxPooling

        这样处理对输入特征图的尺寸没有要求了,无论怎样都可以缩放到7×7 -> 在R-CNN中,输入图像被限定为227×227,而在Fast R-CNN中,输入图像尺寸 不再被限制。

        这里忽略了Channel维度,和最大池化一样,有几个通道就做几次,最后 concat就可以了。  

四、Fast R-CNN网络架构

4.1 分类器

4.2 边界框回归器 

 

d x , d y :用 来 调 整 候 选 框 中 心 坐 标 的 回 归 参 数

d w , d h :用 来 调 整 候 选 框 宽 度 和 高 度 的 回 归 参 数  

这篇关于Fast R-CNN 与 R-CNN的不同之处的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1054164

相关文章

深度学习实战:如何利用CNN实现人脸识别考勤系统

1. 何为CNN及其在人脸识别中的应用 卷积神经网络(CNN)是深度学习中的核心技术之一,擅长处理图像数据。CNN通过卷积层提取图像的局部特征,在人脸识别领域尤其适用。CNN的多个层次可以逐步提取面部的特征,最终实现精确的身份识别。对于考勤系统而言,CNN可以自动从摄像头捕捉的视频流中检测并识别出员工的面部。 我们在该项目中采用了 RetinaFace 模型,它基于CNN的结构实现高效、精准的

如何将卷积神经网络(CNN)应用于医学图像分析:从分类到分割和检测的实用指南

引言 在现代医疗领域,医学图像已经成为疾病诊断和治疗规划的重要工具。医学图像的类型繁多,包括但不限于X射线、CT(计算机断层扫描)、MRI(磁共振成像)和超声图像。这些图像提供了对身体内部结构的详细视图,有助于医生在进行准确诊断和制定个性化治疗方案时获取关键的信息。 1. 医学图像分析的挑战 医学图像分析面临诸多挑战,其中包括: 图像数据的复杂性:医学图像通常具有高维度和复杂的结构

每天一道面试题(2):fail-safe 机制与 fail-fast 机制分别有什么作用?

当谈论Java集合的 fail-fast 和 fail-safe 机制时,涉及的是在集合被并发修改时的行为和处理方式。这些机制对保证程序的正确性和稳定性非常重要,尤其是在多线程环境中。 1. Fail-Fast 机制 定义: Fail-fast 机制的核心是在检测到集合在遍历过程中被修改时,立即抛出 ConcurrentModificationException 异常,从而中断迭代操作。这种

CNN-LSTM模型中应用贝叶斯推断进行时间序列预测

这篇论文的标题是《在混合CNN-LSTM模型中应用贝叶斯推断进行时间序列预测》,作者是Thi-Lich Nghiem, Viet-Duc Le, Thi-Lan Le, Pierre Maréchal, Daniel Delahaye, Andrija Vidosavljevic。论文发表在2022年10月于越南富国岛举行的国际多媒体分析与模式识别会议(MAPR)上。 摘要部分提到,卷积

【tensorflow CNN】构建cnn网络,识别mnist手写数字识别

#coding:utf8"""构建cnn网络,识别mnistinput conv1 padding max_pool([2,2],strides=[2,2]) conv2 x[-1,28,28,1] 卷积 [5,5,1,32] -> [-1,24,24,32]->[-1,28,

震惊,从仿真走向现实,3D Map最大提升超12,Cube R-CNN使用合成数据集迁移到真实数据集

震惊,从仿真走向现实,3D Map最大提升超12,Cube R-CNN使用合成数据集迁移到真实数据集 Abstract 由于摄像机视角多变和场景条件不可预测,在动态路边场景中从单目图像中准确检测三维物体仍然是一个具有挑战性的问题。本文介绍了一种两阶段的训练策略来应对这些挑战。我们的方法首先在大规模合成数据集RoadSense3D上训练模型,该数据集提供了多样化的场景以实现稳健的特征学习。随后,

Segmentation简记-Multi-stream CNN based Video Semantic Segmentation for Automated Driving

创新点 1.RFCN & MSFCN 总结 网络结构如图所示。输入视频得到图像分割结果。 简单粗暴

UVa 11992 Fast Matrix Operations 线段树

UVa 11992 Fast Matrix Operations 题目大意:有一个r行c列的全0矩阵,支持三种操作: 1 x1 y1 x2 y2 v 子矩阵(x1,y1,x2,y2)的所有元素增加v(v > 0)。 2 x1 y1 x2 y2 v 子矩阵(x1,y1,x2,y2)的所有元素设为v(v > 0)。 3 x1 y1 x2 y2    查询子矩阵(x1,y1,x2,y2

【HDU】4965 Fast Matrix Calculation 矩阵快速幂

传送门:【HDU】4965 Fast Matrix Calculation 题目分析:因为比赛的时候写的太匆忙。。写的不堪入目,所以赛后重写了一次,顺便就贴一下了。 因为A*B=C,所以C^(N*N-1) = A*B*A*B*A*...*B*A*B,因为满足结合律所以变成A*( (B*A)^(N*N-2) )*B,因为中间得到的矩阵最大不超过K(K<=6),所以可以对中间的矩阵快速幂,然

Fast Image Cache

https://github.com/path/FastImageCache   Fast Image Cache is an efficient, persistent, and—above all—fast way to store and retrieve images in your iOS application. Part of any good iOS applica