HDU 1695 GCD 容斥原理/莫比乌斯反演

2024-06-12 11:38

本文主要是介绍HDU 1695 GCD 容斥原理/莫比乌斯反演,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题意:

给你两个区间[a,b],[c,d],还有一个k。让你从区间[a,b]中找出x,[c,d]中找出y,问共有多少组(x,y)使得gcd(x,y)=k。

(x,y)和(y,x)算一组。

思路:

参考:http://blog.csdn.net/yang_7_46/article/details/9072533

容斥。


普通容斥:

*如果gcd(x,y)=k,则gcd(x/k,y/k)=1。那么对于两个区间来说,我们都默认进行了b = b/k,d = d/k操作。(a,c固定为1)。(这样做并不会使得组数遗漏)

因为(x,y)和(y,x)只算一组,因此在容斥过程中,我们要保证x < y,这样才不会重复计算。

剩下就是容斥的过程,可以戳这里。

其它一些细节要自己处理一下,例如b = 1或者d = 1的时候。


莫比乌斯反演:

莫比乌斯资料:http://blog.csdn.net/acdreamers/article/details/8542292

定义f(n):gcd(x, y)为n的方案数。

定义F(n):gcd(x, y)是n的倍数的方案数。

则我们要求的就是f(1)。默认b < d,并且都已经除以k。

F(n) = (b/n)*(d/n);

套用莫比乌斯公式即可。


code(普通容斥):

#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;const int MAXN = 1e5+5;
typedef long long LL;int a, b, c, d, k;
bool isp[MAXN+5];
vector <int> vec[MAXN+5];void prime()
{memset(isp, false, sizeof(isp));for(int i = 2;i <= MAXN; i++){if(!isp[i]){vec[i].push_back(i);for(int j = i*2; j <= MAXN; j += i){isp[j] = true;vec[j].push_back(i);}}}
}
LL calc(int t, int p)
{LL ret, v = 1;int cnt = 0;for(int i = 0;i < vec[t].size(); i++){if((1<<i)&p){cnt++;v *= vec[t][i];}}if(v == 0) return 0;ret = (LL)(d-t)/v;if(cnt%2 == 0) ret = -ret;return ret;
}void solve()
{//tepan 1LL res = d;for(int i = 2;i <= b; i++){res += d-i;for(int j = 1;j < (1<<vec[i].size()); j++)res -= calc(i, j);}printf("%I64d\n", res);
}int main()
{prime();int T, cas = 0;scanf("%d", &T);while(T--){scanf("%d%d%d%d%d", &a, &b, &c, &d, &k);printf("Case %d: ", ++cas);if(k == 0){puts("0");continue;}b /= k, d /= k;if(b > d) swap(b, d);if(b == 0 || d == 0)puts("0");else solve();}return 0;
}

 code(莫比乌斯反演):

#include <bits/stdc++.h>
using namespace std;const int N = 1e5+5;
typedef long long LL;int b, d, k;
int prime[N], cnt;
int mu[N];
bool vis[N];
void Mobius() {mu[1] = 1;cnt = 0;for(int i = 2;i < N; i++) {if(!vis[i]) {mu[i] = -1;prime[cnt++] = i;}for(int j = 0;j < cnt; j++) {if(i*prime[j] >= N) break;vis[i*prime[j]] = true;if(i%prime[j] != 0)mu[i*prime[j]] = -mu[i];else {mu[i*prime[j]] = 0;break;}}}
}int main() {Mobius();int T, cas = 0;scanf("%d", &T);while(T--) {scanf("%*d%d%*d%d%d", &b, &d, &k);printf("Case %d: ", ++cas);if(k == 0) {puts("0");continue;}b /= k, d /= k;if(b > d) swap(b, d);LL ans = 0;for(int i = 1;i <= b; i++)ans += 1ll*mu[i]*(b/i)*(d/i);LL tmp = 0;for(int i = 1;i <= b; i++)tmp += 1ll*mu[i]*(b/i)*(b/i);printf("%I64d\n", ans-tmp/2);}return 0;
}



这篇关于HDU 1695 GCD 容斥原理/莫比乌斯反演的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1054115

相关文章

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

MyBatis-Plus 与 Spring Boot 集成原理实战示例

《MyBatis-Plus与SpringBoot集成原理实战示例》MyBatis-Plus通过自动配置与核心组件集成SpringBoot实现零配置,提供分页、逻辑删除等插件化功能,增强MyBa... 目录 一、MyBATis-Plus 简介 二、集成方式(Spring Boot)1. 引入依赖 三、核心机制

redis和redission分布式锁原理及区别说明

《redis和redission分布式锁原理及区别说明》文章对比了synchronized、乐观锁、Redis分布式锁及Redission锁的原理与区别,指出在集群环境下synchronized失效,... 目录Redis和redission分布式锁原理及区别1、有的同伴想到了synchronized关键字

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

setsid 命令工作原理和使用案例介绍

《setsid命令工作原理和使用案例介绍》setsid命令在Linux中创建独立会话,使进程脱离终端运行,适用于守护进程和后台任务,通过重定向输出和确保权限,可有效管理长时间运行的进程,本文给大家介... 目录setsid 命令介绍和使用案例基本介绍基本语法主要特点命令参数使用案例1. 在后台运行命令2.

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、