[Algorithm][动态规划][二维费用的背包问题][一和零][盈利计划]详细讲解

本文主要是介绍[Algorithm][动态规划][二维费用的背包问题][一和零][盈利计划]详细讲解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 0.原理讲解
  • 1.一和零
    • 1.题目链接
    • 2.算法原理详解
    • 3.代码实现
  • 2.盈利计划
    • 1.题目链接
    • 2.算法原理详解
    • 3.代码实现


0.原理讲解

  • 本质仍然是背包问题,但是相较于普通的背包问题,只是限制条件多了一个而已

1.一和零

1.题目链接

  • 一和零

2.算法原理详解

  • 思路
    • 确定状态表示 -> dp[i][j]的含义

      • dp[i][j][k]:从前i个字符串中挑选,字符0的个数不超过j,字符1的个数不超过k,所有的选法中,最大的长度
    • 推导状态转移方程:根据最后一个位置的情况,分情况讨论
      请添加图片描述

    • 初始化:

      • 三个维度都多开一“行”虚拟结点
      • j, k这两个维度的初始化都可以交给DP阶段
    • 确定填表顺序:i从小到大

    • 确定返回值:dp[len][n][m]

  • 滚动数组优化空间
    • 大致思路与完全背包一致
    • 操作
      • 删除所有的i
      • 修改一下j, k的遍历顺序
    • 注意不要去强行解释优化后的妆台表示以及状态转移方程,费时费力还没啥意义

3.代码实现

// v1.0
int findMaxForm(vector<string>& strs, int n, int m) 
{int len = strs.size();vector<vector<vector<int>>> dp(len + 1, vector<vector<int>>(n + 1, vector<int>(m + 1)));for(int i = 1; i <= len; i++){// 先统计字符串中0 1的个数int a = 0, b = 0;for(auto& ch : strs[i - 1]){ch == '0' ? a++ : b++;}// DPfor(int j = 0; j <= n; j++){for(int k = 0; k <= m; k++){dp[i][j][k] = dp[i - 1][j][k];if(j >= a && k >= b){dp[i][j][k] = max(dp[i][j][k], dp[i - 1][j - a][k - b] + 1);}}}}return dp[len][n][m];
}
---------------------------------------------------------------------------------
// v2.0 滚动数组优化
int findMaxForm(vector<string>& strs, int n, int m) 
{int len = strs.size();vector<vector<int>> dp(n + 1, vector<int>(m + 1));for(int i = 1; i <= len; i++){// 先统计字符串中0 1的个数int a = 0, b = 0;for(auto& ch : strs[i - 1]){ch == '0' ? a++ : b++;}// DPfor(int j = n; j >= a; j--){for(int k = m; k >= b; k--){dp[j][k] = max(dp[j][k], dp[j - a][k - b] + 1);}}}return dp[n][m];
}

2.盈利计划

1.题目链接

  • 盈利计划

2.算法原理详解

  • 思路
    • 确定状态表示 -> dp[i][j]的含义

      • dp[i][j][k]:从前i个计划中挑选,总人数不超过j,总利润至少为k,一共有多少种选法
    • 推导状态转移方程:根据最后一个位置的情况,分情况讨论
      请添加图片描述

    • 初始化:

      • 三个维度都多开一“行”虚拟结点
      • dp[0][j][0] = 1
      • k这个维度的初始化可以交给DP阶段
    • 确定填表顺序:i从小到大

    • 确定返回值:dp[len][n][m]

  • 滚动数组优化空间
    • 大致思路与完全背包一致
    • 操作
      • 删除所有的i
      • 修改一下j, k的遍历顺序
    • 注意不要去强行解释优化后的妆台表示以及状态转移方程,费时费力还没啥意义

3.代码实现

// v1.0
int profitableSchemes(int n, int m, vector<int>& g, vector<int>& p) 
{const int MOD = 1e9 + 7;int len = g.size();// Initvector<vector<vector<int>>> dp(len + 1, vector<vector<int>>(n + 1, vector<int>(m + 1)));for(int j = 0; j <= n; j++){dp[0][j][0] = 1;}// DPfor(int i = 1; i <= len; i++){for(int j = 0; j <= n; j++){for(int k = 0; k <= m; k++){dp[i][j][k] = dp[i - 1][j][k];if(j >= g[i - 1]){dp[i][j][k] += dp[i - 1][j - g[i - 1]][max(0, k - p[i - 1])];}dp[i][j][k] %= MOD;}}}return dp[len][n][m];
}
------------------------------------------------------------------------------
// v2.0 滚动数组优化
int profitableSchemes(int n, int m, vector<int>& g, vector<int>& p) 
{const int MOD = 1e9 + 7;int len = g.size();// Initvector<vector<int>> dp(n + 1, vector<int>(m + 1));for(int j = 0; j <= n; j++){dp[j][0] = 1;}// DPfor(int i = 1; i <= len; i++){for(int j = n; j >= g[i - 1]; j--){for(int k = m; k >= 0; k--){dp[j][k] += dp[j - g[i - 1]][max(0, k - p[i - 1])];dp[j][k] %= MOD;}}}return dp[n][m];
}

这篇关于[Algorithm][动态规划][二维费用的背包问题][一和零][盈利计划]详细讲解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1053927

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

Vue3绑定props默认值问题

《Vue3绑定props默认值问题》使用Vue3的defineProps配合TypeScript的interface定义props类型,并通过withDefaults设置默认值,使组件能安全访问传入的... 目录前言步骤步骤1:使用 defineProps 定义 Props步骤2:设置默认值总结前言使用T

Python与MySQL实现数据库实时同步的详细步骤

《Python与MySQL实现数据库实时同步的详细步骤》在日常开发中,数据同步是一项常见的需求,本篇文章将使用Python和MySQL来实现数据库实时同步,我们将围绕数据变更捕获、数据处理和数据写入这... 目录前言摘要概述:数据同步方案1. 基本思路2. mysql Binlog 简介实现步骤与代码示例1

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2

解决升级JDK报错:module java.base does not“opens java.lang.reflect“to unnamed module问题

《解决升级JDK报错:modulejava.basedoesnot“opensjava.lang.reflect“tounnamedmodule问题》SpringBoot启动错误源于Jav... 目录问题描述原因分析解决方案总结问题描述启动sprintboot时报以下错误原因分析编程异js常是由Ja

基于C#实现PDF转图片的详细教程

《基于C#实现PDF转图片的详细教程》在数字化办公场景中,PDF文件的可视化处理需求日益增长,本文将围绕Spire.PDFfor.NET这一工具,详解如何通过C#将PDF转换为JPG、PNG等主流图片... 目录引言一、组件部署二、快速入门:PDF 转图片的核心 C# 代码三、分辨率设置 - 清晰度的决定因

Java中HashMap的用法详细介绍

《Java中HashMap的用法详细介绍》JavaHashMap是一种高效的数据结构,用于存储键值对,它是基于哈希表实现的,提供快速的插入、删除和查找操作,:本文主要介绍Java中HashMap... 目录一.HashMap1.基本概念2.底层数据结构:3.HashCode和equals方法为什么重写Has

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据