第十九节:暴力递归到动态规划

2024-06-11 21:20

本文主要是介绍第十九节:暴力递归到动态规划,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一 动画规划的概念 优化出现重复解的递归

一旦写出递归来,改动态规划就很快

尝试策略和状态转移方程是一码事

学会尝试是攻克动态规划最本质的能力

如果你发现你有重复调用的过程,动态规划在算过一次之后把答案记下来,下回在越到重复调用过程就直接调

做题思路 一定要从尝试入手

动态规划的套路从尝试出发,从尝试递归出发,然后在改动态规划的时候第一步找到base的情况填上相应位置的数,然后根据下一步的条件推出其他位置的数;

二 给定四个参数 N、M、K、P,返回方法数,机器人必须走 K 步

2.1描述

假设有排成一行的N个位置,记为1~N,N 一定大于或等于 2

开始时机器人在其中的M位置上(M 一定是 1~N 中的一个)

如果机器人来到1位置,那么下一步只能往右来到2位置;

如果机器人来到N位置,那么下一步只能往左来到 N-1 位置;

如果机器人来到中间位置,那么下一步可以往左走或者往右走;

规定机器人必须走 K 步,最终能来到P位置(P也是1~N中的一个)的方法有多少种

给定四个参数 N、M、K、P,返回方法数。

2.2 分析

2.3 代码

// 机器人当前来到的位置是cur,// 机器人还有rest步需要去走,// 最终的目标是aim,// 有哪些位置?1~N// 返回:机器人从cur出发,走过rest步之后,最终停在aim的方法数,是多少?public static int process1(int cur, int rest, int aim, int N) {if (rest == 0) { // 如果已经不需要走了,走完了!return cur == aim ? 1 : 0;}// (cur, rest)if (cur == 1) { // 1 -> 2return process1(2, rest - 1, aim, N);}// (cur, rest)if (cur == N) { // N-1 <- Nreturn process1(N - 1, rest - 1, aim, N);}// (cur, rest)return process1(cur - 1, rest - 1, aim, N) + process1(cur + 1, rest - 1, aim, N);}

2.4 优化 递归改动态规划 一 有重复解的递归是可以优化的

上面递归的过程中出现了重复的值,采用缓存法记录已经走过的路就不用再走了,一个字问题保证只算一次


public static int ways2(int N, int start, int aim, int K) {if (N < 2 || start < 1 || start > N || aim < 1 || aim > N || K < 1) {return -1;}int[][] dp = new int[N + 1][K + 1];for (int i = 0; i <= N; i++) {for (int j = 0; j <= K; j++) {dp[i][j] = -1;}}// dp就是缓存表// dp[cur][rest] == -1 -> process1(cur, rest)之前没算过!// dp[cur][rest] != -1 -> process1(cur, rest)之前算过!返回值,dp[cur][rest]// N+1 * K+1return process2(start, K, aim, N, dp);}// cur 范: 1 ~ N// rest 范:0 ~ Kpublic static int process2(int cur, int rest, int aim, int N, int[][] dp) {if (dp[cur][rest] != -1) {return dp[cur][rest];}// 之前没算过!int ans = 0;if (rest == 0) {ans = cur == aim ? 1 : 0;} else if (cur == 1) {ans = process2(2, rest - 1, aim, N, dp);} else if (cur == N) {ans = process2(N - 1, rest - 1, aim, N, dp);} else {ans = process2(cur - 1, rest - 1, aim, N, dp) + process2(cur + 1, rest - 1, aim, N, dp);}dp[cur][rest] = ans;return ans;}

三 给定一个整型数组arr,代表数值不同的纸牌排成一条线

范围模型 玩家博弈问题

3.1 描述

给定一个整型数组arr,代表数值不同的纸牌排成一条线

玩家A和玩家B依次拿走每张纸牌

规定玩家A先拿,玩家B后拿

但是每个玩家每次只能拿走最左或最右的纸牌

玩家A和玩家B都绝顶聪明

请返回最后获胜者的分数。

3.2分析

先手

后手,后手能拿的只能是先手拿剩下的

优化1 傻缓存

优化二

3.3代码

package class18;public class Code02_CardsInLine {// 根据规则,返回获胜者的分数public static int win1(int[] arr) {if (arr == null || arr.length == 0) {return 0;}int first = f1(arr, 0, arr.length - 1);int second = g1(arr, 0, arr.length - 1);return Math.max(first, second);}// arr[L..R],先手获得的最好分数返回public static int f1(int[] arr, int L, int R) {if (L == R) {return arr[L];}int p1 = arr[L] + g1(arr, L + 1, R);int p2 = arr[R] + g1(arr, L, R - 1);return Math.max(p1, p2);}// // arr[L..R],这里面是对手做决定,后手获得的最好分数返回public static int g1(int[] arr, int L, int R) {if (L == R) {return 0;}int p1 = f1(arr, L + 1, R); // 对手拿走了L位置的数int p2 = f1(arr, L, R - 1); // 对手拿走了R位置的数return Math.min(p1, p2);}public static int win2(int[] arr) {if (arr == null || arr.length == 0) {return 0;}int N = arr.length;int[][] fmap = new int[N][N];int[][] gmap = new int[N][N];for (int i = 0; i < N; i++) {for (int j = 0; j < N; j++) {fmap[i][j] = -1;gmap[i][j] = -1;}}int first = f2(arr, 0, arr.length - 1, fmap, gmap);int second = g2(arr, 0, arr.length - 1, fmap, gmap);return Math.max(first, second);}// arr[L..R],先手获得的最好分数返回public static int f2(int[] arr, int L, int R, int[][] fmap, int[][] gmap) {if (fmap[L][R] != -1) {return fmap[L][R];}int ans = 0;if (L == R) {ans = arr[L];} else {int p1 = arr[L] + g2(arr, L + 1, R, fmap, gmap);int p2 = arr[R] + g2(arr, L, R - 1, fmap, gmap);ans = Math.max(p1, p2);}fmap[L][R] = ans;return ans;}// // arr[L..R],后手获得的最好分数返回public static int g2(int[] arr, int L, int R, int[][] fmap, int[][] gmap) {if (gmap[L][R] != -1) {return gmap[L][R];}int ans = 0;if (L != R) {int p1 = f2(arr, L + 1, R, fmap, gmap); // 对手拿走了L位置的数int p2 = f2(arr, L, R - 1, fmap, gmap); // 对手拿走了R位置的数ans = Math.min(p1, p2);}gmap[L][R] = ans;return ans;}

3.4 优化代码

 public static int win3(int[] arr) {if (arr == null || arr.length == 0) {return 0;}int N = arr.length;int[][] fmap = new int[N][N];int[][] gmap = new int[N][N];for (int i = 0; i < N; i++) {fmap[i][i] = arr[i];}for (int startCol = 1; startCol < N; startCol++) {int L = 0;int R = startCol;while (R < N) {fmap[L][R] = Math.max(arr[L] + gmap[L + 1][R], arr[R] + gmap[L][R - 1]);gmap[L][R] = Math.min(fmap[L + 1][R], fmap[L][R - 1]);L++;R++;}}return Math.max(fmap[0][N - 1], gmap[0][N - 1]);}public static void main(String[] args) {int[] arr = { 5, 7, 4, 5, 8, 1, 6, 0, 3, 4, 6, 1, 7 };System.out.println(win1(arr));System.out.println(win2(arr));System.out.println(win3(arr));}}

这篇关于第十九节:暴力递归到动态规划的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1052311

相关文章

Java调用C#动态库的三种方法详解

《Java调用C#动态库的三种方法详解》在这个多语言编程的时代,Java和C#就像两位才华横溢的舞者,各自在不同的舞台上展现着独特的魅力,然而,当它们携手合作时,又会碰撞出怎样绚丽的火花呢?今天,我们... 目录方法1:C++/CLI搭建桥梁——Java ↔ C# 的“翻译官”步骤1:创建C#类库(.NET

MyBatis编写嵌套子查询的动态SQL实践详解

《MyBatis编写嵌套子查询的动态SQL实践详解》在Java生态中,MyBatis作为一款优秀的ORM框架,广泛应用于数据库操作,本文将深入探讨如何在MyBatis中编写嵌套子查询的动态SQL,并结... 目录一、Myhttp://www.chinasem.cnBATis动态SQL的核心优势1. 灵活性与可

Mybatis嵌套子查询动态SQL编写实践

《Mybatis嵌套子查询动态SQL编写实践》:本文主要介绍Mybatis嵌套子查询动态SQL编写方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、实体类1、主类2、子类二、Mapper三、XML四、详解总结前言MyBATis的xml文件编写动态SQL

SpringBoot实现Kafka动态反序列化的完整代码

《SpringBoot实现Kafka动态反序列化的完整代码》在分布式系统中,Kafka作为高吞吐量的消息队列,常常需要处理来自不同主题(Topic)的异构数据,不同的业务场景可能要求对同一消费者组内的... 目录引言一、问题背景1.1 动态反序列化的需求1.2 常见问题二、动态反序列化的核心方案2.1 ht

golang实现动态路由的项目实践

《golang实现动态路由的项目实践》本文主要介绍了golang实现动态路由项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习... 目录一、动态路由1.结构体(数据库的定义)2.预加载preload3.添加关联的方法一、动态路由1

Python Selenium动态渲染页面和抓取的使用指南

《PythonSelenium动态渲染页面和抓取的使用指南》在Web数据采集领域,动态渲染页面已成为现代网站的主流形式,本文将从技术原理,环境配置,核心功能系统讲解Selenium在Python动态... 目录一、Selenium技术架构解析二、环境搭建与基础配置1. 组件安装2. 驱动配置3. 基础操作模

mysql递归查询语法WITH RECURSIVE的使用

《mysql递归查询语法WITHRECURSIVE的使用》本文主要介绍了mysql递归查询语法WITHRECURSIVE的使用,WITHRECURSIVE用于执行递归查询,特别适合处理层级结构或递归... 目录基本语法结构:关键部分解析:递归查询的工作流程:示例:员工与经理的层级关系解释:示例:树形结构的数

慢sql提前分析预警和动态sql替换-Mybatis-SQL

《慢sql提前分析预警和动态sql替换-Mybatis-SQL》为防止慢SQL问题而开发的MyBatis组件,该组件能够在开发、测试阶段自动分析SQL语句,并在出现慢SQL问题时通过Ducc配置实现动... 目录背景解决思路开源方案调研设计方案详细设计使用方法1、引入依赖jar包2、配置组件XML3、核心配

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾