宏观内存信息统计

2024-06-11 17:58
文章标签 统计 内存 信息 宏观

本文主要是介绍宏观内存信息统计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

/proc/meminfo统计信息解释

linux下内存的统计信息的解释:

 

例如 "cat /proc/meminfo":

MemTotal:  1031016 kB 
MemFree:  13548 kB
MemShared:  0 kB
Buffers:  98064 kB
Cached:   692320 kB
SwapCached:  2244 kB
Active:   563112 kB
Inact_dirty:  309584 kB
Inact_clean:  79508 kB
Inact_target:  190440 kB
HighTotal:  130992 kB
HighFree:  1876 kB
LowTotal:  900024 kB
LowFree:  11672 kB
SwapTotal:  1052248 kB
SwapFree:  1043908 kB
Committed_AS:  332340 kB  

The information comes in the form of both high-level and low-level statistics. At the top you see a quick summary of the most common values people would like to look at. Below you find the individual values we will discuss. First we will discuss the high-level statistics.

High-Level Statistics

  • MemTotal: Total usable ram (i.e. physical ram minus a few reserved bits and the kernel binary code)
  • MemFree: Is sum of LowFree+HighFree (overall stat)
  • MemShared: 0; is here for compat reasons but always zero.
  • Buffers: Memory in buffer cache. mostly useless as metric nowadays
  • Cached: Memory in the pagecache (diskcache) minus SwapCache
  • SwapCache: Memory that once was swapped out, is swapped back in but still also is in the swapfile (if memory is needed it doesn't need to be swapped out AGAIN because it is already in the swapfile. This saves I/O)

Detailed Level Statistics
VM Statistics

VM splits the cache pages into "active" and "inactive" memory. The idea is that if you need memory and some cache needs to be sacrificed for that, you take it from inactive since that's expected to be not used. The vm checks what is used on a regular basis and moves stuff around.

When you use memory, the CPU sets a bit in the pagetable and the VM checks that bit occasionally, and based on that, it can move pages back to active. And within active there's an order of "longest ago not used" (roughly, it's a little more complex in reality). The longest-ago used ones can get moved to inactive. Inactive is split into two in the above kernel (2.4.18-24.8.0). Some have it three.

  • Active: Memory that has been used more recently and usually not reclaimed unless absolutely necessary.
  • Inact_dirty: Dirty means "might need writing to disk or swap." Takes more work to free. Examples might be files that have not been written to yet. They aren't written to memory too soon in order to keep the I/O down. For instance, if you're writing logs, it might be better to wait until you have a complete log ready before sending it to disk.
  • Inact_clean: Assumed to be easily freeable. The kernel will try to keep some clean stuff around always to have a bit of breathing room.
  • Inact_target: Just a goal metric the kernel uses for making sure there are enough inactive pages around. When exceeded, the kernel will not do work to move pages from active to inactive. A page can also get inactive in a few other ways, e.g. if you do a long sequential I/O, the kernel assumes you're not going to use that memory and makes it inactive preventively. So you can get more inactive pages than the target because the kernel marks some cache as "more likely to be never used" and lets it cheat in the "last used" order.

Memory Statistics

  • HighTotal: is the total amount of memory in the high region. Highmem is all memory above (approx) 860MB of physical RAM. Kernel uses indirect tricks to access the high memory region. Data cache can go in this memory region.
  • LowTotal: The total amount of non-highmem memory.
  • LowFree: The amount of free memory of the low memory region. This is the memory the kernel can address directly. All kernel datastructures need to go into low memory.
  • SwapTotal: Total amount of physical swap memory.
  • SwapFree: Total amount of swap memory free.
  • Committed_AS: An estimate of how much RAM you would need to make a 99.99% guarantee that there never is OOM (out of memory) for this workload. Normally the kernel will overcommit memory. That means, say you do a 1GB malloc, nothing happens, really. Only when you start USING that malloc memory you will get real memory on demand, and just as much as you use. So you sort of take a mortgage and hope the bank doesn't go bust. Other cases might include when you mmap a file that's shared only when you write to it and you get a private copy of that data. While it normally is shared between processes. The Committed_AS is a guesstimate of how much RAM/swap you would need worst-case.

 

 

/proc/meminfo文件分析

> cat /proc/meminfo    读出的内核信息进行解释,

下篇文章会简单对读出该信息的代码进行简单的分析。

MemTotal:       507480 kB
MemFree:         10800 kB
Buffers:         34728 kB
Cached:          98852 kB
SwapCached:        128 kB
Active:         304248 kB
Inactive:        46192 kB
HighTotal:           0 kB
HighFree:            0 kB
LowTotal:       507480 kB
LowFree:         10800 kB
SwapTotal:      979956 kB
SwapFree:       941296 kB
Dirty:              32 kB
Writeback:           0 kB
AnonPages:      216756 kB
Mapped:          77560 kB
Slab:            22952 kB
SReclaimable:    15512 kB
SUnreclaim:       7440 kB
PageTables:       2640 kB
NFS_Unstable:        0 kB
Bounce:              0 kB
CommitLimit:   1233696 kB
Committed_AS:   828508 kB
VmallocTotal:   516088 kB
VmallocUsed:      5032 kB
VmallocChunk:   510580 kB



相应选项中文意思想各位高手已经知道,如何翻译有什么错误,请务必指出:

    MemTotal: 所有可用RAM大小 (即物理内存减去一些预留位和内核的二进制代码大小)

     MemFree: LowFree与HighFree的总和,被系统留着未使用的内存

     Buffers: 用来给文件做缓冲大小

      Cached: 被高速缓冲存储器(cache memory)用的内存的大小(等于 diskcache minus SwapCache ).

  SwapCached:被高速缓冲存储器(cache memory)用的交换空间的大小
             已经被交换出来的内存,但仍然被存放在swapfile中。用来在需要的时候很快的被替换而不需要再次打开I/O端口。

      Active: 在活跃使用中的缓冲或高速缓冲存储器页面文件的大小,除非非常必要否则不会被移作他用.

    Inactive: 在不经常使用中的缓冲或高速缓冲存储器页面文件的大小,可能被用于其他途径.

   HighTotal:
    HighFree: 该区域不是直接映射到内核空间。内核必须使用不同的手法使用该段内存。

    LowTotal:
     LowFree: 低位可以达到高位内存一样的作用,而且它还能够被内核用来记录一些自己的数据结构。Among many
              other things, it is where everything from the Slab is
              allocated.  Bad things happen when you're out of lowmem.
         
   SwapTotal: 交换空间的总大小

    SwapFree: 未被使用交换空间的大小

    Dirty: 等待被写回到磁盘的内存大小。
     
   Writeback: 正在被写回到磁盘的内存大小。
  
   AnonPages:未映射页的内存大小
  
   Mapped: 设备和文件等映射的大小。
  
   Slab: 内核数据结构缓存的大小,可以减少申请和释放内存带来的消耗。

   SReclaimable:可收回Slab的大小
  
   SUnreclaim:不可收回Slab的大小(SUnreclaim+SReclaimable=Slab)
  
   PageTables:管理内存分页页面的索引表的大小。
  
   NFS_Unstable:不稳定页表的大小
  
   Bounce:

 CommitLimit: Based on the overcommit ratio ('vm.overcommit_ratio'),
              this is the total amount of  memory currently available to
              be allocated on the system. This limit is only adhered to
              if strict overcommit accounting is enabled (mode 2 in
              'vm.overcommit_memory').
              The CommitLimit is calculated with the following formula:
              CommitLimit = ('vm.overcommit_ratio' * Physical RAM) + Swap
              For example, on a system with 1G of physical RAM and 7G
              of swap with a `vm.overcommit_ratio` of 30 it would
              yield a CommitLimit of 7.3G.
              For more details, see the memory overcommit documentation
              in vm/overcommit-accounting.
             
Committed_AS: The amount of memory presently allocated on the system.
              The committed memory is a sum of all of the memory which
              has been allocated by processes, even if it has not been
              "used" by them as of yet. A process which malloc()'s 1G
              of memory, but only touches 300M of it will only show up
              as using 300M of memory even if it has the address space
              allocated for the entire 1G. This 1G is memory which has
              been "committed" to by the VM and can be used at any time
              by the allocating application. With strict overcommit
              enabled on the system (mode 2 in 'vm.overcommit_memory'),
              allocations which would exceed the CommitLimit (detailed
              above) will not be permitted. This is useful if one needs
              to guarantee that processes will not fail due to lack of
              memory once that memory has been successfully allocated.

VmallocTotal: 可以vmalloc虚拟内存大小

VmallocUsed: 已经被使用的虚拟内存大小。

VmallocChunk: largest contigious block of vmalloc area which is free

linux中内存是如何使用的。
当有应用需要读写磁盘数据时,由系统把相关数据从磁盘读取到内存,如果物理内存不够,则把内存中的部分数据导入到磁盘,从而把磁盘的部分空间当作虚拟内存来使用,也称为Swap。如果给所有应用分配足够内存后,物理内存还有剩余,linux会尽量再利用这些空闲内存,以提高整体I/O效率,其方法是把这部分剩余内存再划分为cache及buffer两部分加以利用。
从磁盘读取到内存的数据在被相关应用程序读取后,如果有剩余内存,则这部分数据会存入cache,以备第2次读取时,避免重新读取磁盘。当一个应用程序在内存中修改过数据后,因为写入磁盘速度相对较低,在有空闲内存的情况下,这些数据先存入buffer,在以后某个时间再写入磁盘,从而应用程序可以继续后面的操作,而不必等待这些数据写入磁盘的操作完成。
如果在某个时刻,系统需要更多的内存,则会把cache部分擦除,并把buffer中的内容写入磁盘,从而把这两部分内存释放给系统使用,这样再次读取cache中的内容时,就需要重新从磁盘读取了。

通过以上分析可以得知,空闲物理内存不多,不一定表示系统运行状态很差,因为内存的cache及buffer部分可以随时被重用,在某种意义上,这两部分内存也可以看作诗额外的空闲内存。swap如果被频繁调用,bi,bo长时间不为0,则才是内存资源是否紧张的依据。



下面简单来个例子,看看已用内存和物理内存大小..

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int MemInfo(char* Info, int len);
int main()
{
  char buf[128];

  memset(buf, 0, 128);
  MemInfo(buf, 100);
  printf("%s", buf);
  return 0;
}
int MemInfo(char* Info, int len)
{
  char sStatBuf[256];
  FILE* fp;
  int flag;
  int TotalMem;
  int UsedMem;
  char* line;
  if(system("free -m | awk '{print $2,$3}' > mem"));
  memset(sStatBuf, 0, 256);
  fp = fopen("mem", "rb");
  if(fp < 0)
  {
    return -1;
   }
  fread(sStatBuf,1, sizeof(sStatBuf) , fp);
 
  line = strstr(sStatBuf, "/n");
  TotalMem = atoi(line);
  line = strstr(line, " ");
  UsedMem = atoi(line);
  memset(sStatBuf, 0, 256);
  sprintf(sStatBuf, "Used %dM/Total %dM/n", UsedMem, TotalMem);
  if(strlen(sStatBuf) > len)
   {
     return -1;
   }
   memcpy(Info, sStatBuf, strlen(sStatBuf));
   return 0;
}


结果:Used 488M/Total 495M



这篇关于宏观内存信息统计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1051885

相关文章

Python内存管理机制之垃圾回收与引用计数操作全过程

《Python内存管理机制之垃圾回收与引用计数操作全过程》SQLAlchemy是Python中最流行的ORM(对象关系映射)框架之一,它提供了高效且灵活的数据库操作方式,本文将介绍如何使用SQLAlc... 目录安装核心概念连接数据库定义数据模型创建数据库表基本CRUD操作创建数据读取数据更新数据删除数据查

linux查找java项目日志查找报错信息方式

《linux查找java项目日志查找报错信息方式》日志查找定位步骤:进入项目,用tail-f实时跟踪日志,tail-n1000查看末尾1000行,grep搜索关键词或时间,vim内精准查找并高亮定位,... 目录日志查找定位在当前文件里找到报错消息总结日志查找定位1.cd 进入项目2.正常日志 和错误日

k8s容器放开锁内存限制问题

《k8s容器放开锁内存限制问题》nccl-test容器运行mpirun时因NCCL_BUFFSIZE过大导致OOM,需通过修改docker服务配置文件,将LimitMEMLOCK设为infinity并... 目录问题问题确认放开容器max locked memory限制总结参考:https://Access

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

IDEA与MyEclipse代码量统计方式

《IDEA与MyEclipse代码量统计方式》文章介绍在项目中不安装第三方工具统计代码行数的方法,分别说明MyEclipse通过正则搜索(排除空行和注释)及IDEA使用Statistic插件或调整搜索... 目录项目场景MyEclipse代码量统计IDEA代码量统计总结项目场景在项目中,有时候我们需要统计

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致