网络空间安全数学基础·期末复习

2024-06-11 16:44

本文主要是介绍网络空间安全数学基础·期末复习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、整除与同余

1.最大公因子性质:
(a,b)=(-a,b)=(a,-b)=(-a,-b)=(|a|,|b|)
(0,a)=a

2.最大公因子求解(欧几里得算法、辗转相除法)
例:(-3824,1837)

3.最大公因子定理:
设a,b是两个不全为零的整数,则存在两个整数u, v,使得:(a, b)=ua+vb。
例:将a = 888,b = 312的最大公因子表示为(a,b) = ua+vb。

4.最小公倍数性质:
[a,b] = [–a,b] = [a,–b] = [–a,–b] = [|a|,|b|]
,特别地,如果(a, b) = 1, [a, b] = |ab|。

5.算术基本定理:
定理:每个大于1的整数a都可以分解为有限个素数的乘积:a=p1p2…pr。该分解除素数因子的排列外是唯一的。

6.标准因子分解式:
由于p1,p2,…,pr中可能存在重复,所以a的分解式可表示为有限个素数的幂的乘积:,这称为a的标准因子分解式。

7.Eratosthenes筛法:
设a是任意大于1的整数,则a的除1外最小正因子q是一素数,并且当a是一合数时,
例:
求不超过100的全部素数。

同理可以将因子5,7的倍数划去: (3) 划去5的全部倍数: (4) 划去7的全部倍数。
最终经过上述步骤后剩下的数除1外就是不超过100的全部素 数: (25个)    2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97

8.快速指数算法
例:求解 2^64 (mod 641)

二、群

★1.群的定义:
设G是一非空集合。如果在G上定义了一个代数运算,称为乘法,记为ab,而且这个运算满足下列条件,那么(G,·)称为一个群:
1) G对于乘法是封闭,即对于G中任意元素a,b,有ab∈G;(封闭性)
2) 对于G中任意元素a,b,c,有(ab)c = a(bc) ;(交换律
(满足上述两点则为半群)
3) 在G中有一个元素e,对于G中任意元素a,有 ea=a;(左单位元)
4) 对于G中任一元素a都存在G中的一个元素b,使ba=e。(左逆元)
注意:
1) 左单位元也是右单位元,左逆元也是右逆元,所以单位元和逆元不再区分左右。
2) 单位元和逆元是唯一的。
3) 如果一个非空有限集合G中的运算封闭且满足结合律(半群),则它是一个群的充分必要条件是满足消去律(如果ax=ax’,则x=x’;(左消去) 如果ya=y’a,则y=y’。 (右消去))。

2.群的阶
如果一个群G中元素的个数是无限多个,则称G是无限群;如果G中的元素个数是有限多个,则称G是有限群,G中元素的个数称为群的阶,记为|G|。

3.子群
一个群G的一个子集H如果对于G的乘法构成一个群, 则称H为G的子群,记作H≤G。一个群G至少有两个子群:G本身;只包含单位元的子集{e}, 它们称为G的平凡子群,其他子群成为真子群(H<G)。
注意:
1) 子群与群单位元同一。
2) a∈H,a^(-1)是a在G中的逆元,则a^(-1)∈H。

4.子群判定:
一个群G的一个非空子集H构成一个子群的充分必要条件是:对于∀a,b∈H,有:ab^(-1)∈H。
一个群G的一个非空有限子集H构成一个子群的充分必要条件是:对于任意a,b∈H,有ab∈H。

5.同构与同态
1) 映射
单射:∀a, b∈A,如果a≠b,则 f(a)≠f(b)。
满射:∀b∈B,总有a∈A,使f(a)=b。
一一映射:既是满射又是单射的映射。
2) 同态与同构
假设G和G’是两个群,若存在映射f:G→G’ 满足:∀a, b∈G,均有 f(a·b)= f(a)⊙f(b)则称f是G到G’的一个同态映射或简称同态。
如果f是单射,则称f是单同态;
如果f是满射,则称f是满同态;
如果f是一一映射,则称f是同构映射;
如果G=G’,同态f称为自同态,同构映射f称为自同构映射。
3) 反像
设f是G到G’的同态映射。∀a’∈G’,集合 {a|f(a)=a’, a∈G}可能是空集,也可能包含一个以上的元素(f不是单射)。这个集合称为a’的完全反像。(可以类比函数值y所对应的x值,但并不完全一样,因为一个x仅能对应一个y,而此处一个a’可以有多个a对应,如下图)
特别地,单位元的完全反像称为同态映射f的核,记为ker(f),即ker(f) = {a|a∈G,f(a)=e’},ker(f)是G的子群,称为f的核子群。

这篇关于网络空间安全数学基础·期末复习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1051719

相关文章

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

Java中常见队列举例详解(非线程安全)

《Java中常见队列举例详解(非线程安全)》队列用于模拟队列这种数据结构,队列通常是指先进先出的容器,:本文主要介绍Java中常见队列(非线程安全)的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一.队列定义 二.常见接口 三.常见实现类3.1 ArrayDeque3.1.1 实现原理3.1.2

安装centos8设置基础软件仓库时出错的解决方案

《安装centos8设置基础软件仓库时出错的解决方案》:本文主要介绍安装centos8设置基础软件仓库时出错的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录安装Centos8设置基础软件仓库时出错版本 8版本 8.2.200android4版本 javas

Linux基础命令@grep、wc、管道符的使用详解

《Linux基础命令@grep、wc、管道符的使用详解》:本文主要介绍Linux基础命令@grep、wc、管道符的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录grep概念语法作用演示一演示二演示三,带选项 -nwc概念语法作用wc,不带选项-c,统计字节数-

python操作redis基础

《python操作redis基础》Redis(RemoteDictionaryServer)是一个开源的、基于内存的键值对(Key-Value)存储系统,它通常用作数据库、缓存和消息代理,这篇文章... 目录1. Redis 简介2. 前提条件3. 安装 python Redis 客户端库4. 连接到 Re

SpringBoot基础框架详解

《SpringBoot基础框架详解》SpringBoot开发目的是为了简化Spring应用的创建、运行、调试和部署等,使用SpringBoot可以不用或者只需要很少的Spring配置就可以让企业项目快... 目录SpringBoot基础 – 框架介绍1.SpringBoot介绍1.1 概述1.2 核心功能2

Spring Boot集成SLF4j从基础到高级实践(最新推荐)

《SpringBoot集成SLF4j从基础到高级实践(最新推荐)》SLF4j(SimpleLoggingFacadeforJava)是一个日志门面(Facade),不是具体的日志实现,这篇文章主要介... 目录一、日志框架概述与SLF4j简介1.1 为什么需要日志框架1.2 主流日志框架对比1.3 SLF4

Spring Boot集成Logback终极指南之从基础到高级配置实战指南

《SpringBoot集成Logback终极指南之从基础到高级配置实战指南》Logback是一个可靠、通用且快速的Java日志框架,作为Log4j的继承者,由Log4j创始人设计,:本文主要介绍... 目录一、Logback简介与Spring Boot集成基础1.1 Logback是什么?1.2 Sprin

MySQL复合查询从基础到多表关联与高级技巧全解析

《MySQL复合查询从基础到多表关联与高级技巧全解析》本文主要讲解了在MySQL中的复合查询,下面是关于本文章所需要数据的建表语句,感兴趣的朋友跟随小编一起看看吧... 目录前言:1.基本查询回顾:1.1.查询工资高于500或岗位为MANAGER的雇员,同时还要满足他们的姓名首字母为大写的J1.2.按照部门