自动检测曲别针数量:图像处理技术的应用

2024-06-11 13:52

本文主要是介绍自动检测曲别针数量:图像处理技术的应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

在这篇博客中,我们将探讨如何使用计算机视觉技术自动检测图像中曲别针的数量。
如图:
请添加图片描述

[1]使用灰度转换

由于彩色信息对于曲别针计数并不重要,我们将图像转换为灰度图,这样可以减少处理数据的复杂度,加速后续的图像处理步骤。

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

[2]二值化处理

通过应用二值化处理,我们将灰度图转换为黑白图像。在这个步骤中,图像中的所有像素点要么是黑色,要么是白色,这简化了轮廓的检测。

_, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY_INV)
  • 二值化后的图片:
    在这里插入图片描述

[3]轮廓检测

使用OpenCV的findContours函数,我们从二值图像中提取轮廓。这些轮廓代表潜在的曲别针。

# 查找轮廓
contours, _ = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 遍历轮廓并计算面积
for contour in contours:cv2.drawContours(image, [contour], -1, (0, 255, 0), 2)

但是这边我们可以看到很多不必要的内容都被放进来了,所以我们接着进行进一步操作。
在这里插入图片描述

[4]面积过滤和计数

为了区分真正的曲别针和其他噪声,我们计算每个轮廓的面积,并只统计那些面积超过预设阈值的轮廓。这一步骤帮助我们准确地识别和计数曲别针。

# 查找轮廓
contours, _ = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cv2.imshow("Binary", binary)# 初始化计数器
large_contour_count = 0
min_area = 10000  # 设置面积阈值,根据实际情况调整# 遍历轮廓并计算面积
for contour in contours:area = cv2.contourArea(contour)if area > min_area:large_contour_count += 1cv2.drawContours(image, [contour], -1, (0, 255, 0), 2)  # 绘制满足条件的轮廓
  • 效果:
    在这里插入图片描述
    可以看出确实正确的识别出曲别针的数量
    在这里插入图片描述

完整代码

import cv2# 加载图像
image = cv2.imread('./images/nums.jpg')
cv2.imshow("Original", image)# 转换为灰度图
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 应用二值化阈值
_, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY_INV)
cv2.imshow("Binary", binary)# 查找轮廓
contours, _ = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cv2.imshow("Binary", binary)# 初始化计数器
large_contour_count = 0
min_area = 10000  # 设置面积阈值,根据实际情况调整# 遍历轮廓并计算面积
for contour in contours:area = cv2.contourArea(contour)if area > min_area:large_contour_count += 1cv2.drawContours(image, [contour], -1, (0, 255, 0), 2)  # 绘制满足条件的轮廓# 显示图像
cv2.imshow('Contoured Image', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
# 输出符合条件的曲别针数量
print(f"曲别针数量为: {large_contour_count}")

这篇关于自动检测曲别针数量:图像处理技术的应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1051357

相关文章

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

PostgreSQL简介及实战应用

《PostgreSQL简介及实战应用》PostgreSQL是一种功能强大的开源关系型数据库管理系统,以其稳定性、高性能、扩展性和复杂查询能力在众多项目中得到广泛应用,本文将从基础概念讲起,逐步深入到高... 目录前言1. PostgreSQL基础1.1 PostgreSQL简介1.2 基础语法1.3 数据库

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

Python中yield的用法和实际应用示例

《Python中yield的用法和实际应用示例》在Python中,yield关键字主要用于生成器函数(generatorfunctions)中,其目的是使函数能够像迭代器一样工作,即可以被遍历,但不会... 目录python中yield的用法详解一、引言二、yield的基本用法1、yield与生成器2、yi

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

Python中高级文本模式匹配与查找技术指南

《Python中高级文本模式匹配与查找技术指南》文本处理是编程世界的永恒主题,而模式匹配则是文本处理的基石,本文将深度剖析PythonCookbook中的核心匹配技术,并结合实际工程案例展示其应用,希... 目录引言一、基础工具:字符串方法与序列匹配二、正则表达式:模式匹配的瑞士军刀2.1 re模块核心AP

从基础到高阶详解Python多态实战应用指南

《从基础到高阶详解Python多态实战应用指南》这篇文章主要从基础到高阶为大家详细介绍Python中多态的相关应用与技巧,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、多态的本质:python的“鸭子类型”哲学二、多态的三大实战场景场景1:数据处理管道——统一处理不同数据格式

Java Stream 的 Collectors.toMap高级应用与最佳实践

《JavaStream的Collectors.toMap高级应用与最佳实践》文章讲解JavaStreamAPI中Collectors.toMap的使用,涵盖基础语法、键冲突处理、自定义Map... 目录一、基础用法回顾二、处理键冲突三、自定义 Map 实现类型四、处理 null 值五、复杂值类型转换六、处理

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布