mmdetection使用未定义backbone训练

2024-06-11 13:44

本文主要是介绍mmdetection使用未定义backbone训练,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

首先找到你需要用到的 backbone,一般有名的backbone 都会在github有相应的代码开源和预训练权重提供
本文以mobilenetv3 + fastercnn 作为举例,在mmdetection中并未提供 mobilenetv3,提供的仅有 mobilenetv2;
在github上找到 mobilenetv3 实现和权重,下载到本地;本文使用参考为:https://github.com/d-li14/mobilenetv3.pytorch

为了能够用在mmdetection体系中,我们要对代码进行修改,以适应mmdetection 配置式构建网络

增加 init_weigths函数

 def init_weights(self, pretrained=None):logger = get_root_logger()if self.init_cfg is None and pretrained is None:logger.warn(f'No pre-trained weights for 'f'{self.__class__.__name__}, 'f'training start from scratch')passelse:assert 'checkpoint' in self.init_cfg, f'Only support ' \f'specify `Pretrained` in ' \f'`init_cfg` in ' \f'{self.__class__.__name__} 'if self.init_cfg is not None:ckpt_path = self.init_cfg['checkpoint']elif pretrained is not None:ckpt_path = pretrainedckpt = _load_checkpoint(ckpt_path, logger=logger, map_location='cpu')if 'state_dict' in ckpt:_state_dict = ckpt['state_dict']elif 'model' in ckpt:_state_dict = ckpt['model']else:_state_dict = ckptstate_dict = _state_dictmissing_keys, unexpected_keys = \self.load_state_dict(state_dict, False)logger.info(f"Miss {missing_keys}")logger.info(f"Unexpected {unexpected_keys}")

修改 模型参数列表

可以看到上面用到了 self.init_cfg ,但原始模型并没有,因此需要
修改模型参数列表,添加 init_cfg,out_indices,等
并初始化

修改forward 【结合模型特点、网络结构 进行修改,将out_indices 对应的输出取出来】

def forward(self, x):outs = []# x = self.features(x)for i,f in enumerate(self.features):x = f(x)if i in self.out_indices:outs.append(x)assert (len(outs) == 4)return outs

有些网络的实现并不是直接使用,而是使用配置,来提供不同类型的网络模型,这里就有 small large 两种
由于我们上面的 模型类 修改了参数列表,因此也需要对 这种二次配置的函数 参数列表进行修改 添加 init_cfg,out_indices 等,原有参数尽量保持不变

def mobilenetv3_large(pretrained=False, num_classes = 1000, distillation=False, init_cfg=None, out_indices=[],**kwargs):# ...cfgs = []return MobileNetV3(cfgs, mode='large',init_cfg=init_cfg, out_indices=out_indices,**kwargs)

添加注解

然后,我们要将他们添加到 mmdet 中的 registry 中,
mmdet提供了一种 装饰器的模式 用于将我们自定义的模型 加入到其中

# 导入
from mmdet.models.builder import BACKBONES,MODELS,Necks # 这里定义了mmdetection 的各种组件# 添加 注解
@BACKBONES.register_module()
def mobilenetv3_large():#...@BACKBONES.register_module()
def mobilenetv3_small():#...

这个时候,我们的文件基本修改完成

注意事项

注意这个时候 其实只是配置完成,但在运行时 不会真正加载到 registry 中 ,运行就会发现报错

'mobilenetv3_large is not in the models registry'"

解决方法 就是运行时引入,在train.py 导入这个文件

import mobilenetv3

我在配置时就遇到了这样情况,感谢 https://blog.csdn.net/Kiki_soda/article/details/137491803 提醒

debug

image.png
可以看到 我们的模型已经被加载进去

其他方法

官方提供的方法

  1. 一种是 修改源码层中的 init 文件,这个也要求你的mobilenet文件也要定义在源码文件中
  2. 使用一种 custom_imports 【尝试未成功】

具体参考官方文档 https://mmdetection.readthedocs.io/zh-cn/v2.21.0/tutorials/customize_models.html

配置文件

然后配置文件,根据模型结构合理设置参数

_base_ = ['./_base_/models/faster_rcnn_r50_fpn.py','./_base_/datasets/coco_detection.py','./_base_/schedules/schedule_1x.py', './_base_/default_runtime.py'
]model = dict(backbone=dict(type='mobilenetv3_large',init_cfg=dict(type='Pretrained',checkpoint='pretrain/mobilenetv3-large-1cd25616.pth', # 预训练权重位置),out_indices = [2, 5, 9, 14], # 根据模型来设置),neck=dict(type='FPN',in_channels=[24, 40, 80, 160], # 根据模型来设置 和out_indices 对应out_channels=256, # 修改这个会牵动 下面很多配置; 如需修改 其他后续参数也需修改num_outs=5))

完成!就可以开始训练了

对于如何设置 out_indices,可以参考 timm 提供的模型 特征输出情况,进而设置

参考:

https://blog.csdn.net/Kiki_soda/article/details/137491803
https://mmdetection.readthedocs.io/zh-cn/v2.21.0/tutorials/customize_models.html
https://www.cnblogs.com/qiulinzhang/p/12252033.html

这篇关于mmdetection使用未定义backbone训练的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1051335

相关文章

Python使用Tkinter打造一个完整的桌面应用

《Python使用Tkinter打造一个完整的桌面应用》在Python生态中,Tkinter就像一把瑞士军刀,它没有花哨的特效,却能快速搭建出实用的图形界面,作为Python自带的标准库,无需安装即可... 目录一、界面搭建:像搭积木一样组合控件二、菜单系统:给应用装上“控制中枢”三、事件驱动:让界面“活”

C/C++ chrono简单使用场景示例详解

《C/C++chrono简单使用场景示例详解》:本文主要介绍C/C++chrono简单使用场景示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友... 目录chrono使用场景举例1 输出格式化字符串chrono使用场景China编程举例1 输出格式化字符串示

Python验证码识别方式(使用pytesseract库)

《Python验证码识别方式(使用pytesseract库)》:本文主要介绍Python验证码识别方式(使用pytesseract库),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录1、安装Tesseract-OCR2、在python中使用3、本地图片识别4、结合playwrigh

Python使用Code2flow将代码转化为流程图的操作教程

《Python使用Code2flow将代码转化为流程图的操作教程》Code2flow是一款开源工具,能够将代码自动转换为流程图,该工具对于代码审查、调试和理解大型代码库非常有用,在这篇博客中,我们将深... 目录引言1nVflRA、为什么选择 Code2flow?2、安装 Code2flow3、基本功能演示

使用vscode搭建pywebview集成vue项目实践

《使用vscode搭建pywebview集成vue项目实践》:本文主要介绍使用vscode搭建pywebview集成vue项目实践,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录环境准备项目源码下载项目说明调试与生成可执行文件核心代码说明总结本节我们使用pythonpywebv

C++类和对象之默认成员函数的使用解读

《C++类和对象之默认成员函数的使用解读》:本文主要介绍C++类和对象之默认成员函数的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、默认成员函数有哪些二、各默认成员函数详解默认构造函数析构函数拷贝构造函数拷贝赋值运算符三、默认成员函数的注意事项总结一

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

Linux基础命令@grep、wc、管道符的使用详解

《Linux基础命令@grep、wc、管道符的使用详解》:本文主要介绍Linux基础命令@grep、wc、管道符的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录grep概念语法作用演示一演示二演示三,带选项 -nwc概念语法作用wc,不带选项-c,统计字节数-

SpringCloud中的@FeignClient注解使用详解

《SpringCloud中的@FeignClient注解使用详解》在SpringCloud中使用Feign进行服务间的调用时,通常会使用@FeignClient注解来标记Feign客户端接口,这篇文章... 在Spring Cloud中使用Feign进行服务间的调用时,通常会使用@FeignClient注解