【深度学习】Loss为Nan的可能原因

2024-06-11 12:28

本文主要是介绍【深度学习】Loss为Nan的可能原因,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1. 问题情境
  • 2. 原因分析
  • 3. 导致Loss为Nan的其他可能原因

1. 问题情境

在某个网络架构下,我为某个数据项引入了一个损失函数。
这个数据项是nn.Embedding类型的,我加入的损失函数是对nn.Embedding空间做约束。
因为我在没加入优化loss前,我的nn.Embedding的数据不在同一条直线上,希望通过下面这样一个loss,约束它们在同一条直线上:
在这里插入图片描述
我的变量计算是这么写的:

embedding = self.latent_codes(idx) # 通过nn.Embedding,根据idx获得对应的latent codes
vecs = self.latent_codes.weight.data # 获得所有的latent codes
d1 = torch.sum((vecs[0].unsqueeze(0) - embedding) ** 2, dim=1).sqrt() # 计算第i个latent codes到0的距离
d2 = torch.sum((vecs[len(vecs) - 1].unsqueeze(0) - embedding) ** 2, dim=1).sqrt() # 计算第i个latent codes到-1的距离
standard_distance = torch.dist(vecs[0], vecs[len(vecs) - 1], p=2) # 计算0-(-1)的标准距离

然后loss是这么写的:

latent_space_constraint = torch.abs(d1 + d2 - standard_distance) # 约束三点在一条直线上

结果导致了loss为Nan的情况

2. 原因分析

一开始没啥头绪,然后问了一下通义千问,loss为Nan的可能原因,给出的回答是:
------------------------------------
可能是数值稳定性问题:
新损失项的计算可能导致数值下溢或上溢,特别是在涉及指数函数、对数函数或其他可能导致极端值的数学运算时。
解决方案包括添加一个小的正偏移量(例如 1e-8)来避免除以零或对零取对数,或者使用数值稳定的损失函数实现。
------------------------------------
因为上述代码中,idx=0idx=-1(此处用-1表示最后一个变量)得到的d1/d2可能为0,然后导致latent_space_constraint中对应计算结果为0,这可能是导致Nan的结果

于是我直接在loss上加了一个 λ \lambda λ

latent_space_constraint = torch.abs(d1 + d2 - standard_distance) + 1e-8

但是完全没用,还是会出现Nan的问题,于是我问的第二个问题是:解决方案包括添加一个小的正偏移量(例如 1e-8)来避免除以零或对零取对数,或者使用数值稳定的损失函数实现。这个小的正偏移量是在loss上直接加吗?,给出的回答是:
------------------------------------
在深度学习中,为了避免数值不稳定的情况,比如在损失函数中对非常接近零的数取对数或除以接近零的数,我们确实会添加一个小的正偏移量(常被称为 epsilon)。但是,这个偏移量不是直接加到整个损失函数上,而是加到可能会引起数值不稳定的部分上。

------------------------------------
那么我可能引起数值不稳定的地方实际上是d1/d2/standard_distance,所以把代码修改成在数值计算的时候加小的偏移量

embedding = self.latent_codes(idx) # 通过nn.Embedding,根据idx获得对应的latent codes
vecs = self.latent_codes.weight.data # 获得所有的latent codes
d1 = torch.sum((vecs[0].unsqueeze(0) - embedding) ** 2 + 1e-8, dim=1).sqrt() # 计算第i个latent codes到0的距离
d2 = torch.sum((vecs[len(vecs) - 1].unsqueeze(0) - embedding) ** 2 + 1e-8, dim=1).sqrt() # 计算第i个latent codes到-1的距离
standard_distance = torch.dist(vecs[0], vecs[len(vecs) - 1] + 1e-8, p=2) # 计算0-(-1)的标准距离

解决上述问题,loss计算正常,但是还要考虑的是这个loss会不会导致所有embedding趋向同一个点的情况,还要约束0和-1的latent codes不能过于相似

3. 导致Loss为Nan的其他可能原因

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
当在深度学习模型中加入新的损失项后,特定的权重或参数变为 NaN,这通常指向几个关键的问题区域。对于您的情况,pose_latent_codes 中的特定条目(索引为 0 和 5)在一轮优化后变为 NaN,可能的原因如下:

  1. 特定输入导致的数值不稳定

    • 加入的新损失项可能对某些输入特别敏感,导致计算中出现极大的数值或数值下溢,最终产生 NaN。这可能是因为输入数据中的异常值或不适当的数据预处理。
  2. 梯度爆炸

    • 特定输入或损失计算可能导致针对 pose_latent_codes 的梯度变得非常大,特别是对于索引 0 和 5 的条目。这通常发生在深度神经网络中,尤其是当网络层深且梯度在反向传播过程中累积时。
  3. 正则化或惩罚项

    • 如果新加入的损失项包含正则化项(如 L1 或 L2 正则化),并且正则化强度设置得过高,这可能对某些参数造成过度惩罚,导致 NaN。
  4. 数值计算错误

    • 在新损失项的计算中,可能有某些操作(如除以接近零的数、对负数取对数等)导致了数值不稳定,进而产生 NaN。
  5. 代码错误或实现问题

    • 实现新损失项时可能有代码错误,比如数组索引错误、维度不匹配、数据类型不一致等,这些问题在特定情况下才显现出来,例如针对 pose_latent_codes 的特定条目。

排查和解决方案:

  • 检查输入数据:确认数据预处理步骤,确保没有异常值或不合理的数据点进入模型,特别是在索引 0 和 5 的位置。

  • 梯度裁剪:在优化器中使用梯度裁剪技术,限制梯度的大小,防止梯度爆炸。

  • 降低学习率:尝试降低学习率,以减少每一步更新的幅度,使训练更加稳定。

  • 检查正则化项:如果新损失项包含正则化,尝试降低正则化系数,或检查正则化项的实现是否正确。

  • 数值稳定性改进:在损失计算中加入数值稳定性措施,比如避免除以零、使用 log-sum-exp 技巧避免数值下溢等。

  • 代码审查:仔细审查新损失项的实现代码,确保所有操作都是正确的,没有潜在的逻辑错误或数据类型不匹配。

  • 逐层检查梯度:在训练过程中打印各层的梯度,识别梯度异常增大的层,有助于定位问题所在。

通过上述步骤,您可以逐步排查并解决导致特定权重变为 NaN 的问题。在复杂模型中,问题可能不单一,需要综合多个方面的检查和调整。
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

这篇关于【深度学习】Loss为Nan的可能原因的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1051163

相关文章

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

Java.lang.InterruptedException被中止异常的原因及解决方案

《Java.lang.InterruptedException被中止异常的原因及解决方案》Java.lang.InterruptedException是线程被中断时抛出的异常,用于协作停止执行,常见于... 目录报错问题报错原因解决方法Java.lang.InterruptedException 是 Jav

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原