[bigdata-121] python科学计算

2024-06-11 09:32

本文主要是介绍[bigdata-121] python科学计算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

python科学计算,目前用的比较多的库,列一下。用的人多,也就意味着坑少,该踩的坑都被踩完了


1. 数值计算

1.1 numpy

http://www.numpy.org/


1.2 scipy

https://www.scipy.org/


1.3 pandas

http://pandas.pydata.org/


2. 符号计算

sympy


3.绘图

matplot


--------

关于numpy

1.
numpy提供的东西:多维数组以及扩展功能,比如掩码数组和矩阵; 数组的快速操作,包括数据的,逻辑的,改变形状,排序,选择,IO,离散变换,线性代数,随机模拟等等。


1.1 numpy的ndaarray封装同质的数据类型,数据必须是同一类型的; 数据创建时大小固定,改变大小,其实就是创建了新数组。


[1,2,1]是一个数组,rank 1,只有一个axis,这个axis的长度是3,而[[1.,0.,0.],[0.,1.,2.]]是rank 2,第一个axis/dimentsion的长度是2,第二个axis/dimentsion的长度是3。


numpy的数组类是ndararry,也叫做array。numpy.array和python标准库的array.array不同。


ndarray.ndim,几个axis,也就是rank
ndarray.shape,dimensions of array,是一个tuple,比如(3,5),它的长度是rank,也就是ndarry.ndim。


ndarry.size, 数组里有多少个元素,等于shape所有值的乘积。


ndarry.dtype,numpy.int32, numpy.int16, numpy.float64,等等。


ndarray.itemsize, 比如faoat64的itemsize是8, 也就是64/8。


ndarray.data,存放数据的buffer,通常不需要直接使用。




1.2 创建数组
一个二维数据的定义,a = np.arange(15).reshape(3, 5)


一个一维数组的定义,a = np.array([6.,7.,8.])


b = np.array([(1.5,2,3), (4,5,6)])


b = np.array( [ [1,2], [3,4] ], dtype=complex )


b = np.ones( (2,3,4), dtype=np.int16 )np.zeros( (3,4) )


b = np.empty( (2,3) )


b = np.arange( 10, 30, 5 )




1.3 复杂一点的
from numpy import pi
np.linspace( 0, 2, 9 )
x = np.linspace( 0, 2*pi, 100 )
f = np.sin(x)


1.4 相关函数
array, zeros, zeros_like, ones, ones_like, empty, empty_like, arange, linspace, numpy.
random.rand, numpy.random.randn, fromfunction, fromfile


2. 计算
2.1 *和dot不一样,前者是两个数组的元素和元素乘积结果,后者是按照矩阵相乘计算。

2.3 诸多运算函数


3.numpy 基础

强制类型转换,x=np.float32(1.0)   x=np.int_([1.1, 2.2,3.3])


broadcasting: 这个表示,numpy如何处理计算时的shape问题。比如说,在计算中,小的数据要broadcast到更大的数据,以适配shape。比如说,a = np.array([1.,2.,3.]),b = np.array([2.,3.,4.]),那么a*b的结果就是np.array([2.,6.,12.])。对 a = np.array([1.,2.,3.]),b=2.,a*b就是np.array[2.,4.,6.],broadcast将b拉伸成跟a一样的尺寸然后进行计算。


byte-swapping,在存储上,可能会遇到不同的数,在python和c或者操作系统上的存储方式不同,比如大端法或者小端法。

结构数据类型,也就是创建一个包涵不同数据类型的数组,比如:

x=np.array([(1,2.,'hello'),(2,3.,'world') ], dtype=[('foo','i4'), ('bar','f4'), ('bza', 's10')])


更多的细节,可以参考num-ref

-----------------------------------------------------

关于 scipy

scipy的namespace只包含numpy里的函数。scipy是基于numpy的数学算法和便用函数库,比numpy的应用层面更高一些。主要包括,聚类,数学物理方法,快速复立叶变换,积分,插值,线代,图像处理,回归,优化,信号处理,稀疏矩阵,空间数据,统计等等。

-----------------------------------------------------

关于pandas

主要解决如下问题:有标记的数据,多种索引方式,数据集变换,输入数据,高效的内存稀疏数据,移动窗统计。


创建时序数据

s = pd.Series([1,3,5,np.nan,6,8])


创建DataFrame

dates = pd.date_range('20130101', periods=6)

df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))

这就是创建了一个label是日期的6行4列的随机数矩阵。


在基于DataFrame上,出现了一大批算法操作函数。






这篇关于[bigdata-121] python科学计算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1050789

相关文章

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

Python极速搭建局域网文件共享服务器完整指南

《Python极速搭建局域网文件共享服务器完整指南》在办公室或家庭局域网中快速共享文件时,许多人会选择第三方工具或云存储服务,但这些方案往往存在隐私泄露风险或需要复杂配置,下面我们就来看看如何使用Py... 目录一、android基础版:HTTP文件共享的魔法命令1. 一行代码启动HTTP服务器2. 关键参