Hive分析窗口函数(四) GROUPING SETS,GROUPING__ID,CUBE,ROLLUP

2024-06-11 05:32

本文主要是介绍Hive分析窗口函数(四) GROUPING SETS,GROUPING__ID,CUBE,ROLLUP,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

GROUPING SETS,GROUPING__ID,CUBE,ROLLUP
这几个分析函数通常用于OLAP中,不能累加,而且需要根据不同维度上钻和下钻的指标统计,比如,分小时、天、月的UV数。

数据准备:

CREATE EXTERNAL TABLE lxw1234 (
month STRING,
day STRING, 
cookieid STRING 
) ROW FORMAT DELIMITED 
FIELDS TERMINATED BY ',' 
stored as textfile location '/tmp/lxw11/';hive> select * from lxw1234;
OK
2015-03 2015-03-10      cookie1
2015-03 2015-03-10      cookie5
2015-03 2015-03-12      cookie7
2015-04 2015-04-12      cookie3
2015-04 2015-04-13      cookie2
2015-04 2015-04-13      cookie4
2015-04 2015-04-16      cookie4
2015-03 2015-03-10      cookie2
2015-03 2015-03-10      cookie3
2015-04 2015-04-12      cookie5
2015-04 2015-04-13      cookie6
2015-04 2015-04-15      cookie3
2015-04 2015-04-15      cookie2
2015-04 2015-04-16      cookie1

GROUPING SETS

在一个GROUP BY查询中,根据不同的维度组合进行聚合,等价于将不同维度的GROUP BY结果集进行UNION ALL

CREATE EXTERNAL TABLE lxw1234 (
month STRING,
day STRING, 
cookieid STRING 
) ROW FORMAT DELIMITED 
FIELDS TERMINATED BY ',' 
stored as textfile location '/tmp/lxw11/';hive> select * from lxw1234;
OK
2015-03 2015-03-10      cookie1
2015-03 2015-03-10      cookie5
2015-03 2015-03-12      cookie7
2015-04 2015-04-12      cookie3
2015-04 2015-04-13      cookie2
2015-04 2015-04-13      cookie4
2015-04 2015-04-16      cookie4
2015-03 2015-03-10      cookie2
2015-03 2015-03-10      cookie3
2015-04 2015-04-12      cookie5
2015-04 2015-04-13      cookie6
2015-04 2015-04-15      cookie3
2015-04 2015-04-15      cookie2
2015-04 2015-04-16      cookie1

等价于 

SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM lxw1234 GROUP BY month 
UNION ALL 
SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM lxw1234 GROUP BY day

再如:

SELECT 
month,
day,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID 
FROM lxw1234 
GROUP BY month,day 
GROUPING SETS (month,day,(month,day)) 
ORDER BY GROUPING__ID;month         day             uv      GROUPING__ID
------------------------------------------------
2015-03       NULL            5       1
2015-04       NULL            6       1
NULL          2015-03-10      4       2
NULL          2015-03-12      1       2
NULL          2015-04-12      2       2
NULL          2015-04-13      3       2
NULL          2015-04-15      2       2
NULL          2015-04-16      2       2
2015-03       2015-03-10      4       3
2015-03       2015-03-12      1       3
2015-04       2015-04-12      2       3
2015-04       2015-04-13      3       3
2015-04       2015-04-15      2       3
2015-04       2015-04-16      2       3

等价于

SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM lxw1234 GROUP BY month 
UNION ALL 
SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM lxw1234 GROUP BY day
UNION ALL 
SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM lxw1234 GROUP BY month,day

其中的 GROUPING__ID,表示结果属于哪一个分组集合。

CUBE

根据GROUP BY的维度的所有组合进行聚合。

SELECT 
month,
day,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID 
FROM lxw1234 
GROUP BY month,day 
WITH CUBE 
ORDER BY GROUPING__ID;month                              day             uv     GROUPING__ID
--------------------------------------------
NULL            NULL            7       0
2015-03         NULL            5       1
2015-04         NULL            6       1
NULL            2015-04-12      2       2
NULL            2015-04-13      3       2
NULL            2015-04-15      2       2
NULL            2015-04-16      2       2
NULL            2015-03-10      4       2
NULL            2015-03-12      1       2
2015-03         2015-03-10      4       3
2015-03         2015-03-12      1       3
2015-04         2015-04-16      2       3
2015-04         2015-04-12      2       3
2015-04         2015-04-13      3       3
2015-04         2015-04-15      2       3

等价于

SELECT NULL,NULL,COUNT(DISTINCT cookieid) AS uv,0 AS GROUPING__ID FROM lxw1234
UNION ALL 
SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM lxw1234 GROUP BY month 
UNION ALL 
SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM lxw1234 GROUP BY day
UNION ALL 
SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM lxw1234 GROUP BY month,day

ROLLUP

是CUBE的子集,以最左侧的维度为主,从该维度进行层级聚合。
比如,以month维度进行层级聚合:

SELECT 
month,
day,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID  
FROM lxw1234 
GROUP BY month,day
WITH ROLLUP 
ORDER BY GROUPING__ID;month                              day             uv     GROUPING__ID
---------------------------------------------------
NULL             NULL            7       0
2015-03          NULL            5       1
2015-04          NULL            6       1
2015-03          2015-03-10      4       3
2015-03          2015-03-12      1       3
2015-04          2015-04-12      2       3
2015-04          2015-04-13      3       3
2015-04          2015-04-15      2       3
2015-04          2015-04-16      2       3

可以实现这样的上钻过程:
月天的UV->月的UV->总UV

--把month和day调换顺序,则以day维度进行层级聚合:

SELECT 
day,
month,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID  
FROM lxw1234 
GROUP BY day,month 
WITH ROLLUP 
ORDER BY GROUPING__ID;day             month              uv     GROUPING__ID
-------------------------------------------------------
NULL            NULL               7       0
2015-04-13      NULL               3       1
2015-03-12      NULL               1       1
2015-04-15      NULL               2       1
2015-03-10      NULL               4       1
2015-04-16      NULL               2       1
2015-04-12      NULL               2       1
2015-04-12      2015-04            2       3
2015-03-10      2015-03            4       3
2015-03-12      2015-03            1       3
2015-04-13      2015-04            3       3
2015-04-15      2015-04            2       3
2015-04-16      2015-04            2       3

可以实现这样的上钻过程:
天月的UV->天的UV->总UV
(这里,根据天和月进行聚合,和根据天聚合结果一样,因为有父子关系,如果是其他维度组合的话,就会不一样)


这种函数,需要结合实际场景和数据去使用和研究,只看说明的话,很难理解。

这篇关于Hive分析窗口函数(四) GROUPING SETS,GROUPING__ID,CUBE,ROLLUP的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1050313

相关文章

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意

Python中bisect_left 函数实现高效插入与有序列表管理

《Python中bisect_left函数实现高效插入与有序列表管理》Python的bisect_left函数通过二分查找高效定位有序列表插入位置,与bisect_right的区别在于处理重复元素时... 目录一、bisect_left 基本介绍1.1 函数定义1.2 核心功能二、bisect_left 与

java -jar命令运行 jar包时运行外部依赖jar包的场景分析

《java-jar命令运行jar包时运行外部依赖jar包的场景分析》:本文主要介绍java-jar命令运行jar包时运行外部依赖jar包的场景分析,本文给大家介绍的非常详细,对大家的学习或工作... 目录Java -jar命令运行 jar包时如何运行外部依赖jar包场景:解决:方法一、启动参数添加: -Xb

java中BigDecimal里面的subtract函数介绍及实现方法

《java中BigDecimal里面的subtract函数介绍及实现方法》在Java中实现减法操作需要根据数据类型选择不同方法,主要分为数值型减法和字符串减法两种场景,本文给大家介绍java中BigD... 目录Java中BigDecimal里面的subtract函数的意思?一、数值型减法(高精度计算)1.

C++/类与对象/默认成员函数@构造函数的用法

《C++/类与对象/默认成员函数@构造函数的用法》:本文主要介绍C++/类与对象/默认成员函数@构造函数的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录名词概念默认成员函数构造函数概念函数特征显示构造函数隐式构造函数总结名词概念默认构造函数:不用传参就可以

C++类和对象之默认成员函数的使用解读

《C++类和对象之默认成员函数的使用解读》:本文主要介绍C++类和对象之默认成员函数的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、默认成员函数有哪些二、各默认成员函数详解默认构造函数析构函数拷贝构造函数拷贝赋值运算符三、默认成员函数的注意事项总结一

Apache 高级配置实战之从连接保持到日志分析的完整指南

《Apache高级配置实战之从连接保持到日志分析的完整指南》本文带你从连接保持优化开始,一路走到访问控制和日志管理,最后用AWStats来分析网站数据,对Apache配置日志分析相关知识感兴趣的朋友... 目录Apache 高级配置实战:从连接保持到日志分析的完整指南前言 一、Apache 连接保持 - 性

Python函数返回多个值的多种方法小结

《Python函数返回多个值的多种方法小结》在Python中,函数通常用于封装一段代码,使其可以重复调用,有时,我们希望一个函数能够返回多个值,Python提供了几种不同的方法来实现这一点,需要的朋友... 目录一、使用元组(Tuple):二、使用列表(list)三、使用字典(Dictionary)四、 使

Linux中的more 和 less区别对比分析

《Linux中的more和less区别对比分析》在Linux/Unix系统中,more和less都是用于分页查看文本文件的命令,但less是more的增强版,功能更强大,:本文主要介绍Linu... 目录1. 基础功能对比2. 常用操作对比less 的操作3. 实际使用示例4. 为什么推荐 less?5.