基于图像特征的视觉跟踪系统(Feature-based visual tracking systems)--一篇Visual Tracking Benchmark (2013)综述

本文主要是介绍基于图像特征的视觉跟踪系统(Feature-based visual tracking systems)--一篇Visual Tracking Benchmark (2013)综述,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

reference:http://blog.csdn.net/anshan1984/article/details/8866455

最近读到一篇关于视觉跟踪的综述性文章,“Evaluation of Interest Point Detectors and Feature Descriptors for Visual Tracking”,发表在2011年3月International Journal of Computer Vision上。作者非常详尽的评估了2010年之前的图像检测子及图像描述子(检测子包括Harris Corner、Shi-Tomasi' feature、DoG、Fast Hessian、FAST、CenSurE;描述子包括Image Patch、SIFT、SURF、keypoint classification with Randomized Trees、keypoint classification with Randomized Ferns),以及它们用于视觉跟踪时的各项性能,并且提供精心设计的数据集http://ilab.cs.ucsb.edu/tracking_dataset_ijcv/。


视觉跟踪是许多应用的核心部分,包括视觉里程计(visual odomety)、基于视觉的同步定位与地图创建(visual Simultaneous Localization and Mapping)以及增强视觉(Augmented Reality)。这些应用的需求不同,但是都需要鲁棒、精确、快速实时的底层视觉跟踪方法。光流法(optical flow)与基于特征的跟踪方法(feature-basedvisual tracking)是视觉跟踪的两种主要方法,而后者更为常用。


文中归纳了截止2010年已有的基于特征的视觉跟踪系统,已经算非常详尽。

论文下载地址:cs.iupui.edu/~tuceryan/pdf-repository/Gauglitz2011.pdf



Visual Tracking 领域最新paper与code
(2016-csdn blog:http://blog.csdn.net/cyh_24/article/details/51592156)

最近在研究 tracking,所以总结了一些较新的 tracking 相关的论文和源码。

希望能够为刚进入这个领域的同学节省一些时间。

如您有其他优秀的paper或者code,欢迎在回复中留言~谢谢!


Learning Multi-Domain Convolutional Neural Networks for Visual Tracking (VOT2015 冠军) 
author: Hyeonseob Nam, Bohyung Han 
homepage: http://cvlab.postech.ac.kr/research/mdnet/ 
code: https://github.com/HyeonseobNam/MDNet 
阅读笔记: http://blog.csdn.net/cyh_24/article/details/51590174

Learning to Track: Online Multi-Object Tracking by Decision Making (ICCV 2015) 
author: Yu Xiang, Alexandre Alahi, Silvio Savarese 
slides: https://yuxng.github.io/Xiang_ICCV15_12162015.pdf 
code: https://github.com/yuxng/MDP_Tracking

Hierarchical Convolutional Features for Visual Tracking (ICCV 2015) 
author: Chao Ma, Jia-Bin Huang, Xiaokang Yang, Ming-Husan Yang 
project page: https://sites.google.com/site/jbhuang0604/publications/cf2 
code: https://github.com/jbhuang0604/CF2

Robust Visual Tracking via Convolutional Networks without Training (2015) 
author: Kaihua Zhang, Qingshan Liu, Yi Wu, and Ming-Hsuan Yang 
code: http://kaihuazhang.net/CNT_matlab.rar

Transferring Rich Feature Hierarchies for Robust Visual Tracking (2015) 
author: Naiyan Wang, Siyi Li, Abhinav Gupta, Dit-Yan Yeung 
slides: http://valse.mmcheng.net/ftp/20150325/RVT.pptx

Understanding and Diagnosing Visual Tracking Systems (ICCV 2015) 
author: Naiyan Wang, Jianping Shi, Dit-Yan Yeung, Jiaya Jia 
project page: http://winsty.net/tracker_diagnose.html 
code: http://120.52.72.43/winsty.net/c3pr90ntcsf0/diagnose/diagnose_code.zip

RATM: Recurrent Attentive Tracking Model (2015) 
author: Samira Ebrahimi Kahou, Vincent Michalski, Roland Memisevic 
code: https://github.com/saebrahimi/RATM

Visual Tracking with Fully Convolutional Networks (ICCV 2015) 
author: Lijun Wang, Wanli Ouyang, Xiaogang Wang, Huchuan Lu 
code: https://github.com/scott89/FCNT

Deep Tracking: Seeing Beyond Seeing Using Recurrent Neural Networks (AAAI 2016) 
author: Peter Ondr úška and Ingmar Posner 
code: https://github.com/pondruska/DeepTracking

Learning to Track at 100 FPS with Deep Regression Networks (2016) 
author: David Held, Sebastian Thrun, Silvio Savarese

Online Multi-target Tracking using Recurrent Neural Networks (2016) 
author: Anton Milan, Seyed Hamid Rezatofighi, Anthony Dick, Konrad Schindler, Ian Reid 
code: https://bitbucket.org/amilan/rnntracking

Multi-Target Tracking by Discrete-Continuous Energy Minimization (2016) 
author: A. Milan, K. Schindler, S. Roth 
author homepage: http://www.milanton.de/ 
project page: http://www.milanton.de/dctracking/index.html

Near-Online Multi-target Tracking with Aggregated Local Flow Descriptor (2015) 
author: Wongun Choi



这篇关于基于图像特征的视觉跟踪系统(Feature-based visual tracking systems)--一篇Visual Tracking Benchmark (2013)综述的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1050200

相关文章

ubuntu20.0.4系统中安装Anaconda的超详细图文教程

《ubuntu20.0.4系统中安装Anaconda的超详细图文教程》:本文主要介绍了在Ubuntu系统中如何下载和安装Anaconda,提供了两种方法,详细内容请阅读本文,希望能对你有所帮助... 本文介绍了在Ubuntu系统中如何下载和安装Anaconda。提供了两种方法,包括通过网页手动下载和使用wg

ubuntu系统使用官方操作命令升级Dify指南

《ubuntu系统使用官方操作命令升级Dify指南》Dify支持自动化执行、日志记录和结果管理,适用于数据处理、模型训练和部署等场景,今天我们就来看看ubuntu系统中使用官方操作命令升级Dify的方... Dify 是一个基于 docker 的工作流管理工具,旨在简化机器学习和数据科学领域的多步骤工作流。

使用Python和SQLAlchemy实现高效的邮件发送系统

《使用Python和SQLAlchemy实现高效的邮件发送系统》在现代Web应用中,邮件通知是不可或缺的功能之一,无论是订单确认、文件处理结果通知,还是系统告警,邮件都是最常用的通信方式之一,本文将详... 目录引言1. 需求分析2. 数据库设计2.1 User 表(存储用户信息)2.2 CustomerO

Python+wxPython构建图像编辑器

《Python+wxPython构建图像编辑器》图像编辑应用是学习GUI编程和图像处理的绝佳项目,本教程中,我们将使用wxPython,一个跨平台的PythonGUI工具包,构建一个简单的... 目录引言环境设置创建主窗口加载和显示图像实现绘制工具矩形绘制箭头绘制文字绘制临时绘制处理缩放和旋转缩放旋转保存编

Linux系统调试之ltrace工具使用与调试过程

《Linux系统调试之ltrace工具使用与调试过程》:本文主要介绍Linux系统调试之ltrace工具使用与调试过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、ltrace 定义与作用二、ltrace 工作原理1. 劫持进程的 PLT/GOT 表2. 重定

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

python+OpenCV反投影图像的实现示例详解

《python+OpenCV反投影图像的实现示例详解》:本文主要介绍python+OpenCV反投影图像的实现示例详解,本文通过实例代码图文并茂的形式给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前言二、什么是反投影图像三、反投影图像的概念四、反向投影的工作原理一、利用反向投影backproj

Windows系统宽带限制如何解除?

《Windows系统宽带限制如何解除?》有不少用户反映电脑网速慢得情况,可能是宽带速度被限制的原因,只需解除限制即可,具体该如何操作呢?本文就跟大家一起来看看Windows系统解除网络限制的操作方法吧... 有不少用户反映电脑网速慢得情况,可能是宽带速度被限制的原因,只需解除限制即可,具体该如何操作呢?本文

CentOS和Ubuntu系统使用shell脚本创建用户和设置密码

《CentOS和Ubuntu系统使用shell脚本创建用户和设置密码》在Linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设置密码,本文写了一个shell... 在linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设

电脑找不到mfc90u.dll文件怎么办? 系统报错mfc90u.dll丢失修复的5种方案

《电脑找不到mfc90u.dll文件怎么办?系统报错mfc90u.dll丢失修复的5种方案》在我们日常使用电脑的过程中,可能会遇到一些软件或系统错误,其中之一就是mfc90u.dll丢失,那么,mf... 在大部分情况下出现我们运行或安装软件,游戏出现提示丢失某些DLL文件或OCX文件的原因可能是原始安装包