深度学习tracking学习笔记(1):Visual Tracking with Fully Convolutional Networks

2024-06-11 04:32

本文主要是介绍深度学习tracking学习笔记(1):Visual Tracking with Fully Convolutional Networks,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

reference:http://blog.csdn.net/carrierlxksuper/article/details/48918297

两个属性

1)不同层上的CNN特征可以针对不同的tracking问题。越top层的特征越抽象,并且具有语义信息这些特征的优势在于区分不同类别,同时对于形变和遮挡robust(下图a)。但是他们的缺点是无法区别类内的物体,比如不同人(下图b)。而底层的特征更多的是局部特征,可以帮助将目标从背景中分离出来(下图b)。但是无法处理目标外表剧烈变化(下图a)。于是在tracking中作者将两个特征根据干扰的情况,实时切换两种特征。

三个观察以及三个方面的贡献:

作者提到CNN网络在tracking的三个observations是非常重要的,因为这个启发了作者如何将imageNet pretrained CNN应用到visual tracking上去。同时作者cvpr2016的文章仍然是这个思路的延续[1].

下面说一下三个observations:

1.Although the receptive field 1 of CNN feature maps is large, the activated feature maps are sparse and localized. The activated regions are highly correlated to the regions of semantic objects . 意思就是说CNN的feature map来定位目标位置是可行的,这个是基础

2.Many CNN feature maps are noisy or unrelated for the task of discriminating a particular target from its background. 意思是feature map虽然有用,但是不是所有的都有用,有的是噪声或者冗余的,因此需要有个选择机制

3.Different layers encode different types of features. Higher layers capture semantic concepts on object categories, whereas lower layers encode more discriminative features to capture intra class variations. 意思是不同层feature map(conv4和conv5)具有不同的特性,要针对tracking出现的不同情况,利用不同的feature maps.

对应的三个贡献如下:

1) 分析了从大规模图像分类中学到的CNN特征,找出适合于visual tracking的一些属性。也就是不同的computer vision tasks需要 不同的特征。

2)作者提出了一种新的tracking的方法,同时考虑两个不同卷积层的特征输出,使他们相互补充来处理剧烈的外观变化和区分目标本身

3)设计了一种方法来自动选择区分性的feature maps,同时忽略掉另外一个以及噪声。

整体框架:



解释如下:

第一步,对于给定的target,对VGG网络的conv4-3和conv5-3层执行feature map selection,目的是选出最相关的feature maps,具体原因就是构建一个L1范数的正则化目标函数。

第二步,在conv5-3的feature maps基础上,构造一个通用网络GNet,用来捕捉目标的类别信息

第三步,在conv4-3的feature maps基础上,构造一个特定网络SNet,用来将目标从背景中区分出来。

第四步,利用第一帧图像来初始化GNet和SNet,但是两个网络采用不用的更新方法

第五步, 对于新的一帧图像,感兴趣区域(ROI)集中在上一帧的目标位置,包含目标和背景上下文信息,通过全卷积网络传递。

第六步,GNet和SNet网络各自产生一个前景heat map。于是对下一帧目标位置的预测就基于这两个热图。

第七步,干扰项检测用来决定采用上一步产生的哪一个热图,从而决定最后目标的位置。

reference:
http://blog.csdn.net/cv_family_z/article/details/50748236(可参考多篇文章)
简而言之就是:

1.对conv5-3和conv4-3进行特组图筛选; 
2.广义网络GNet根据conv5-3筛选建立; 
3.针对性网络SNet根据conv4-3筛选建立; 
4.SNet,GNet使用第一帧初始化并进行目标热度图回归。 
5.对于新的一帧,上次位置的ROI抠取并送到全卷积网。 
6.SNet,GNet 生成两个热度图,distractor选择策略决定哪个图使用。

特征图筛选 
sel-CNN筛选conv4-3,conv5-3。最小化目标热度图与预测热度图的损失使用BP学习模型参数,根据特征图对损失函数的影响选择特征图: 
Lsel=||M̂ M||2

特征图变化带来的损失变化为: 
这里写图片描述

特征图中某个特征的显著性为: 
这里写图片描述

特征图的显著性为所有元素显著性的和: 
Sk=x,ys(x,y,k)

位置预测 
目标定位首先在GNet上进行,当前帧的位置由上一帧位置,使用高斯模型预测: 
这里写图片描述

为了避免相似物体干扰,当目标外与目标内置信度比值超过一定阈值时,选择SNet预测最终位置: 
这里写图片描述

实验结果对比:

这里写图片描述

一些细节

值得一提的是作者采用了很多细节的技术,这些对于提升效果很有帮助。

比如对于模型的更新,作者将目标漂移以及热图匹配同时考虑在内。

参考文献

[1] Lijun Wang, Wanli Ouyang, Wanli Ouyang, Xiaogang Wang, and Huchuan Lu. "STCT: Sequentially Training Convolutional Networks for Visual Tracking", In Proc. CVPR 2016.

这篇关于深度学习tracking学习笔记(1):Visual Tracking with Fully Convolutional Networks的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1050198

相关文章

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499