PawSQL优化 | 分页查询太慢?别忘了投影下推

2024-06-11 03:12

本文主要是介绍PawSQL优化 | 分页查询太慢?别忘了投影下推,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

​在进行数据库应用开发中,分页查询是一项非常常见而又至关重要的任务。但你是否曾因为需要获取总记录数的性能而感到头疼?现在,让PawSQL的投影下推优化来帮你轻松解决这一问题!本文以TPCH的Q12为案例进行验证,经过PawSQL的优化后性能提升6000多倍!

分页查询的痛点

在进行分页查询时,我们通常需要获取总记录数以计算总页数。绝大多少程序员会在原查询上添加count(1)count(*),性能可能会非常差,特别是在面对复杂查询时。其实对于这个场景,有很大的概率能够对SQL进行重写优化。

解决方案

PawSQL的投影下推优化功能,能够智能地识别并保留关键列,生成一个等价但更高效的count查询。以下是具体的优化步骤:

Step1. 获取原始分页查询,

首先识别原始查询结构,例如:

SELECT * FROM (SELECT col1, col2, ..., colNFROM tableWHERE ...
) dt
ORDER BY ...
LIMIT ?, ?

Step2. 将分页查询改为记录总数查询

        Step2.1 将外层的SELECT *更改为SELECT count(1) FROM (...)

        Step2.2 删除最外层的ORDER BY子句和LIMIT子句

得到的SQL如下:

SELECT count(1) FROM (SELECT col1, col2, ..., colNFROM t1, t2WHERE ...
) dt

Step3. PawSQL投影下推优化

PawSQL可以对对内层查询进行投影下推优化,仅保留对结果有影响的列;同时可能触发其他的重写优化,譬如表关联消除,推荐覆盖索引等。

Step4. 生成高效查询

经过PawSQL的优化重写,新查询可能如下(经过投影下推、表关联消除、查询折叠等重写优化):

SELECT count(1)
FROM t1
WHERE ...

TPCH案例解析

Q12:货运模式和订单优先级查询

SELECT
L_SHIPMODE,
SUM(CASE
WHEN O_ORDERPRIORITY = '1-URGENT'
OR O_ORDERPRIORITY = '2-HIGH'
THEN 1
ELSE 0
END) AS HIGH_LINE_COUNT,
SUM(CASE
WHEN O_ORDERPRIORITY <> '1-URGENT'
AND O_ORDERPRIORITY <> '2-HIGH'
THEN 1
ELSE 0
END) AS LOW_LINE_COUNT
FROM
ORDERS,
LINEITEM
WHERE
O_ORDERKEY = L_ORDERKEY
AND L_SHIPMODE IN ('RAIL', 'FOB')
AND L_COMMITDATE < L_RECEIPTDATE
AND L_SHIPDATE < L_COMMITDATE
AND L_RECEIPTDATE >= DATE '2021-01-01'
AND L_RECEIPTDATE < DATE '2021-01-01' + INTERVAL '1' YEAR
GROUP BY
L_SHIPMODE
ORDER BY
L_SHIPMODE;

查询总记录数

Q12查询总记录数的SQL如下

select count(*)
from (SELECTL_SHIPMODE,SUM(CASEWHEN O_ORDERPRIORITY = '1-URGENT'OR O_ORDERPRIORITY = '2-HIGH'THEN 1ELSE 0END) AS HIGH_LINE_COUNT,SUM(CASEWHEN O_ORDERPRIORITY <> '1-URGENT'AND O_ORDERPRIORITY <> '2-HIGH'THEN 1ELSE 0END) AS LOW_LINE_COUNTFROMORDERS,LINEITEMWHEREO_ORDERKEY = L_ORDERKEYAND L_SHIPMODE IN ('RAIL', 'FOB')AND L_COMMITDATE < L_RECEIPTDATEAND L_SHIPDATE < L_COMMITDATEAND L_RECEIPTDATE >= DATE '2021-01-01'AND L_RECEIPTDATE < DATE '2021-01-01' + INTERVAL '1' YEARGROUP BYL_SHIPMODE) as t

PawSQL优化过程

1. PawSQL首先进行投影下推优化,可以看到派生表的列被消除

select count(*)
from ( select 1from ORDERS, LINEITEMwhere ORDERS.O_ORDERKEY = LINEITEM.L_ORDERKEYand LINEITEM.L_SHIPMODE in ('RAIL', 'FOB')and LINEITEM.L_COMMITDATE < LINEITEM.L_RECEIPTDATEand LINEITEM.L_SHIPDATE < LINEITEM.L_COMMITDATEand LINEITEM.L_RECEIPTDATE >= date '2021-01-01'and LINEITEM.L_RECEIPTDATE < date '2021-01-01' + interval '1' YEARgroup by LINEITEM.L_SHIPMODE) as t

2. 选择列被消除,从而触发了表连接消除(ORDERS被消除)

select /*QB_1*/ count(*)
from (select /*QB_2*/ 1from LINEITEMwhere LINEITEM.L_SHIPMODE in ('RAIL', 'FOB')and LINEITEM.L_COMMITDATE < LINEITEM.L_RECEIPTDATEand LINEITEM.L_SHIPDATE < LINEITEM.L_COMMITDATEand LINEITEM.L_RECEIPTDATE >= date '2021-01-01'and LINEITEM.L_RECEIPTDATE < date '2021-01-01' + interval '1' YEARgroup by LINEITEM.L_SHIPMODE) as t

3. PawSQL接着推荐最优索引(索引查找+避免排序+避免回表)

CREATE INDEX PAWSQL_IDX0245689906 ON tpch_pkfk.lineitem(L_SHIPMODE,L_RECEIPTDATE,L_COMMITDATE,L_SHIPDATE);

4. 性能验证性能提升

执行时间从优化前的453.48ms,降低到0.065ms,性能提升6975倍!

 

cf1cdc13932e4c0c0c73dd1f79a056ff.png

其他应用场景

除了分页查询,PawSQL的投影下推优化还能在以下场景中大放异彩:

  • 星号查询优化:避免使用SELECT *带来的数据传输和计算开销。

  • EAV模型数据优化:减少高度规范化数据模型的连接操作成本。

  • 视图和嵌套视图优化:简化复杂视图查询,降低计算开销。

  • 报表查询优化:提高报表生成的性能,尤其是在处理多维度数据时。


往期文章精选

SQL审核 | PawSQL的审核规则集体系

高级SQL优化 | 查询折叠

EverSQL向左,PawSQL向右


关于PawSQL

PawSQL专注数据库性能优化的自动化和智能化,提供的解决方案覆盖SQL开发、测试、运维的整个流程,支持MySQL,PostgreSQL,openGauss,Oracle等各种数据库。

 

dea225fe7037133e201a764f14167b11.png

 

 

这篇关于PawSQL优化 | 分页查询太慢?别忘了投影下推的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1050047

相关文章

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

Go语言使用Gin处理路由参数和查询参数

《Go语言使用Gin处理路由参数和查询参数》在WebAPI开发中,处理路由参数(PathParameter)和查询参数(QueryParameter)是非常常见的需求,下面我们就来看看Go语言... 目录一、路由参数 vs 查询参数二、Gin 获取路由参数和查询参数三、示例代码四、运行与测试1. 测试编程路

MySQL中优化CPU使用的详细指南

《MySQL中优化CPU使用的详细指南》优化MySQL的CPU使用可以显著提高数据库的性能和响应时间,本文为大家整理了一些优化CPU使用的方法,大家可以根据需要进行选择... 目录一、优化查询和索引1.1 优化查询语句1.2 创建和优化索引1.3 避免全表扫描二、调整mysql配置参数2.1 调整线程数2.