Spring AI 第三讲Embeddings(嵌入式) Model API 第一讲Ollama 嵌入

2024-06-11 00:44

本文主要是介绍Spring AI 第三讲Embeddings(嵌入式) Model API 第一讲Ollama 嵌入,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

有了 Ollama,你可以在本地运行各种大型语言模型 (LLM),并从中生成嵌入。Spring AI 通过 OllamaEmbeddingModel 支持 Ollama 文本嵌入。

嵌入是一个浮点数向量(列表)。两个向量之间的距离可以衡量它们之间的相关性。距离小表示关联度高,距离大表示关联度低。

前提条件

首先需要在本地计算机上运行 Ollama。

请参阅官方 Ollama 项目 README,开始在本地计算机上运行模型。

安装 Ollama 运行 llama3 将下载一个 4.7GB 的模型工件。

添加资源库和 BOM

Spring AI 工件发布在 Spring Milestone 和 Snapshot 资源库中。请参阅 "资源库"部分,将这些资源库添加到您的构建系统中。

为了帮助进行依赖性管理,Spring AI 提供了一个 BOM(物料清单),以确保在整个项目中使用一致的 Spring AI 版本。请参阅 "依赖关系管理 "部分,将 Spring AI BOM 添加到构建系统中。

自动配置

Spring AI 为 Azure Ollama 嵌入式客户端提供 Spring Boot 自动配置功能。要启用它,请在 Maven pom.xml 文件中添加以下依赖关系:

<dependency><groupId>org.springframework.ai</groupId><artifactId>spring-ai-ollama-spring-boot-starter</artifactId>
</dependency>

 或 Gradle build.gradle 构建文件。

dependencies {implementation 'org.springframework.ai:spring-ai-ollama-spring-boot-starter'
}

请参阅 "依赖关系管理 "部分,将 Spring AI BOM 添加到构建文件中

spring.ai.ollama.embedding.options.* 属性用于配置所有嵌入请求的默认选项。(它作为 OllamaEmbeddingModel#withDefaultOptions() 实例使用)。

嵌入属性

前缀 spring.ai.ollama 是配置与 Ollama 连接的属性前缀

PropertyDescriptionDefault

spring.ai.ollama.base-url

运行 Ollama API 服务器的基本 URL。

localhost:11434

The prefix spring.ai.ollama.embedding.options is the property prefix that configures the EmbeddingModel implementation for Ollama.

PropertyDescriptionDefault

spring.ai.ollama.embedding.enabled

启用 Ollama 嵌入模型。

true

spring.ai.ollama.embedding.options.model

要使用的支持模型名称。

mistral

 其余选项属性基于 Ollama 有效参数和值以及Ollama 类型。默认值基于Ollama 类型默认值。

Property

Description

Default

spring.ai.ollama.embedding.options.numa

是否使用 NUMA。

false

spring.ai.ollama.embedding.options.num-ctx

设置用于生成下一个标记的上下文窗口的大小。

2048

spring.ai.ollama.embedding.options.num-batch

-

spring.ai.ollama.embedding.options.num-gqa

变压器层中 GQA 组的数量。某些型号需要,例如 llama2:70b 为 8。

-

spring.ai.ollama.embedding.options.num-gpu

要发送到 GPU 的层数。在 macOS 上,默认值为 1 表示启用金属支持,0 表示禁用。

-

spring.ai.ollama.embedding.options.main-gpu

-

spring.ai.ollama.embedding.options.low-vram

-

spring.ai.ollama.embedding.options.f16-kv

-

spring.ai.ollama.embedding.options.logits-all

-

spring.ai.ollama.embedding.options.vocab-only

-

spring.ai.ollama.embedding.options.use-mmap

-

spring.ai.ollama.embedding.options.use-mlock

-

spring.ai.ollama.embedding.options.num-thread

设置计算时使用的线程数。默认情况下,Ollama 会检测线程数以获得最佳性能。建议将此值设置为系统的物理 CPU 内核数(而非逻辑内核数)。

-

spring.ai.ollama.embedding.options.num-keep

-

spring.ai.ollama.embedding.options.seed

设置生成文本时使用的随机数种子。将其设置为一个特定的数字将使模型为相同的提示生成相同的文本。

0

spring.ai.ollama.embedding.options.num-predict

生成文本时要预测的最大标记数。(默认值:128,-1 = 无限生成,-2 = 填充上下文)

128

spring.ai.ollama.embedding.options.top-k

降低产生无意义答案的概率。数值越大(如 100),答案就越多样化,而数值越小(如 10),答案就越保守。

40

spring.ai.ollama.embedding.options.top-p

与 top-k 一起使用。较高的值(如 0.95)将产生更多样化的文本,而较低的值(如 0.5)将产生更集中和保守的文本。

0.9

spring.ai.ollama.embedding.options.tfs-z

无尾采样用于减少输出中可能性较低的标记的影响。数值越大(例如 2.0),影响越小,而数值为 1.0 时,则会禁用此设置。

1

spring.ai.ollama.embedding.options.typical-p

-

spring.ai.ollama.embedding.options.repeat-last-n

设置模型回溯多远以防止重复。(默认值:64,0 = 禁用,-1 = num_ctx)

64

spring.ai.ollama.embedding.options.temperature

模型的温度。温度越高,模型的答案越有创意。

0.8

spring.ai.ollama.embedding.options.repeat-penalty

设置对重复的惩罚力度。数值越大(如 1.5),对重复的惩罚力度就越大,而数值越小(如 0.9),惩罚力度就越宽松。

1.1

spring.ai.ollama.embedding.options.presence-penalty

-

spring.ai.ollama.embedding.options.frequency-penalty

-

spring.ai.ollama.embedding.options.mirostat

启用 Mirostat 采样以控制复杂度。(默认值:0,0 = 禁用,1 = Mirostat,2 = Mirostat 2.0)

0

spring.ai.ollama.embedding.options.mirostat-tau

控制输出的连贯性和多样性之间的平衡。数值越小,文字越集中、连贯。

5.0

spring.ai.ollama.embedding.options.mirostat-eta

影响算法对生成文本的反馈做出反应的速度。学习率越低,算法的调整速度就越慢,而学习率越高,算法的反应速度就越快。

0.1

spring.ai.ollama.embedding.options.penalize-newline

-

spring.ai.ollama.embedding.options.stop

设置要使用的停止序列。遇到这种模式时,LLM 将停止生成文本并返回。可以通过在模型文件中指定多个单独的停止参数来设置多个停止模式。

-

所有以 spring.ai.ollama.embedding.options 为前缀的属性都可以通过在 EmbeddingRequest 调用中添加特定于请求的 Runtime Options 来在运行时重写。

运行时选项

OllamaOptions.java 提供了 Ollama 配置,如要使用的模型、底层 GPU 和 CPU 调整等。

默认选项也可使用 spring.ai.ollama.embedding.options 属性进行配置。

启动时,使用 OllamaEmbeddingModel#withDefaultOptions() 配置用于所有嵌入请求的默认选项。在运行时,你可以使用作为 EmbeddingRequest 一部分的 OllamaOptions 实例来覆盖默认选项。

例如,要覆盖特定请求的默认模型名称:

EmbeddingResponse embeddingResponse = embeddingModel.call(new EmbeddingRequest(List.of("Hello World", "World is big and salvation is near"),OllamaOptions.create().withModel("Different-Embedding-Model-Deployment-Name"));

示例Controller

这将创建一个 EmbeddingModel 实现,您可以将其注入到您的类中。下面是一个使用 EmbeddingModel 实现的简单 @Controller 类示例。

@RestController
public class EmbeddingController {private final EmbeddingModel embeddingModel;@Autowiredpublic EmbeddingController(EmbeddingModel embeddingModel) {this.embeddingModel = embeddingModel;}@GetMapping("/ai/embedding")public Map embed(@RequestParam(value = "message", defaultValue = "Tell me a joke") String message) {EmbeddingResponse embeddingResponse = this.embeddingModel.embedForResponse(List.of(message));return Map.of("embedding", embeddingResponse);}
}

手动配置

如果不使用 Spring Boot,可以手动配置 OllamaEmbeddingModel。为此,请在项目的 Maven pom.xml 文件中添加 spring-ai-ollama 依赖关系:

<dependency><groupId>org.springframework.ai</groupId><artifactId>spring-ai-ollama</artifactId>
</dependency>

或 Gradle build.gradle 构建文件。

dependencies {implementation 'org.springframework.ai:spring-ai-ollama'
}

请参阅 "依赖关系管理 "部分,将 Spring AI BOM 添加到构建文件中。

spring-ai-ollama 依赖关系还提供对 OllamaChatModel 的访问。有关 OllamaChatModel 的更多信息,请参阅Ollama Chat Client 部分。

接下来,创建一个 OllamaEmbeddingModel 实例,并用它来计算两个输入文本之间的相似度:

var ollamaApi = new OllamaApi();var embeddingModel = new OllamaEmbeddingModel(ollamaApi).withDefaultOptions(OllamaOptions.create().withModel(OllamaOptions.DEFAULT_MODEL).toMap());EmbeddingResponse embeddingResponse = embeddingModel.embedForResponse(List.of("Hello World", "World is big and salvation is near"));

OllamaOptions 为所有嵌入请求提供配置信息。

这篇关于Spring AI 第三讲Embeddings(嵌入式) Model API 第一讲Ollama 嵌入的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1049739

相关文章

SpringBoot集成XXL-JOB实现任务管理全流程

《SpringBoot集成XXL-JOB实现任务管理全流程》XXL-JOB是一款轻量级分布式任务调度平台,功能丰富、界面简洁、易于扩展,本文介绍如何通过SpringBoot项目,使用RestTempl... 目录一、前言二、项目结构简述三、Maven 依赖四、Controller 代码详解五、Service

Java中HashMap的用法详细介绍

《Java中HashMap的用法详细介绍》JavaHashMap是一种高效的数据结构,用于存储键值对,它是基于哈希表实现的,提供快速的插入、删除和查找操作,:本文主要介绍Java中HashMap... 目录一.HashMap1.基本概念2.底层数据结构:3.HashCode和equals方法为什么重写Has

Java 正则表达式的使用实战案例

《Java正则表达式的使用实战案例》本文详细介绍了Java正则表达式的使用方法,涵盖语法细节、核心类方法、高级特性及实战案例,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录一、正则表达式语法详解1. 基础字符匹配2. 字符类([]定义)3. 量词(控制匹配次数)4. 边

Java Scanner类解析与实战教程

《JavaScanner类解析与实战教程》JavaScanner类(java.util包)是文本输入解析工具,支持基本类型和字符串读取,基于Readable接口与正则分隔符实现,适用于控制台、文件输... 目录一、核心设计与工作原理1.底层依赖2.解析机制A.核心逻辑基于分隔符(delimiter)和模式匹

Java中的stream流分组示例详解

《Java中的stream流分组示例详解》Java8StreamAPI以函数式风格处理集合数据,支持分组、统计等操作,可按单/多字段分组,使用String、Map.Entry或Java16record... 目录什么是stream流1、根据某个字段分组2、按多个字段分组(组合分组)1、方法一:使用 Stri

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

Spring创建Bean的八种主要方式详解

《Spring创建Bean的八种主要方式详解》Spring(尤其是SpringBoot)提供了多种方式来让容器创建和管理Bean,@Component、@Configuration+@Bean、@En... 目录引言一、Spring 创建 Bean 的 8 种主要方式1. @Component 及其衍生注解