纯理论容器实现的原理

2024-06-10 14:44
文章标签 实现 原理 容器 纯理论

本文主要是介绍纯理论容器实现的原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

近期在复习容器的原理,希望这篇文章可以帮助到大家。

一、什么是容器?

        容器本质上就是主机上的一个进程。这个进程拥有自己的用户空间并且和主机共享内核空间。

        容器内的进程可以通过系统调用与内核进行交互,使用内核提供的各种功能和资源。

扩展:什么是内核空间以及用户空间?

        Linux 操作系统分为内核空间(Kernel Space)和用户空间(User Space)。内核空间是由操作系统内核使用的内存区域,用于执行核心功能,如设备驱动、内存管理、进程调度等。用户空间则是给用户程序提供的运行环境,用户程序在用户空间中运行,通过系统调用(system call)与内核空间进行交互。

二、namespace是什么?

        1、Namespace简介

Namespace是Linux基于内核实现的资源视图隔离功能,使得不同Namespace的资源彼此不可见。

        2、容器常见的隔离如下:      

  1. PID Namespace(进程隔离): 每个容器都拥有自己的 PID Namespace,使得容器内的进程只能看到自己所属的 PID 命名空间中的进程,从而实现进程的隔离。

  2. Network Namespace(网络隔离): 每个容器都有自己的 Network Namespace,使得容器内的网络栈与宿主机的网络栈相互隔离,每个容器拥有自己的网络接口、IP 地址、路由表等网络资源,从而实现网络的隔离。

  3. Mount Namespace(文件系统隔离): 每个容器都有自己的 Mount Namespace,使得容器内的文件系统与宿主机的文件系统相互隔离,每个容器拥有自己的根文件系统,可以挂载自己的文件系统,从而实现文件系统的隔离。

  4. UTS Namespace(主机名与域名隔离): 每个容器都有自己的 UTS Namespace,使得容器内的主机名与域名与宿主机相互隔离,每个容器拥有自己的主机名和域名,从而实现主机名与域名的隔离。

    1. 重点:

      上述隔离都可以通过很简单的实验来证明。创建容器执行:ps -aux、查看userid、查看ifconfig、查看自己的目录是否和主机的文件目录内容相同、以及修改主机名是否对主机有影响。

三、怎么理解联合文件系统?

        联合文件系统也是容器镜像的文件系统,打包时每一层均作为可读层(LowerDir),如果修改复制可读层到可写层(UpperDir)镜像修改,可读层不可变,用户看到的是可读和可写层合并后的Rootfs.

在Docker中,联合文件系统被广泛应用于容器的镜像管理中。下面是Docker中涉及到的几个重要概念:

  1. LowerDir:LowerDir是指联合文件系统中底层的只读文件系统层。在Docker中,LowerDir通常指的是镜像的分层文件系统,即容器的基础镜像和其上的其他镜像层。

  2. UpperDir:UpperDir是指联合文件系统中的可写层,用于保存容器的修改或新增的文件。在Docker中,UpperDir存储的是容器运行时产生的文件变化。

  3. MergedDir:MergedDir是LowerDir和UpperDir合并后形成的联合文件系统的可见部分。在MergedDir中,会包含LowerDir和UpperDir中的文件,以及它们的修改和新增。

  4. WorkDir:WorkDir是联合文件系统的工作目录,用于处理文件系统的合并操作。在Docker中,WorkDir通常指的是容器运行时的临时工作目录。

  5. Rootfs:Rootfs是指容器的根文件系统,即容器中的文件系统树的顶层目录。在Docker中,Rootfs是由LowerDir和UpperDir合并而成的,它包含了容器中所有的文件和目录。​​​​​​​

四、什么是Mount namespace?

  1. 简单的说就是将目录的挂载点挂载通过系统调用Clone将新的mnt namespace挂载到新的namespace中,来隔离挂点。​​​​​​​

五、怎么实现进程有自己独立的Rootfs?

5.1 容器这个进程为什么有自己的Rootfs?

  1.         因为容器镜像文件系统驱动overlay2以及Mount namespace结合使用来实现进程拥有自己namespace级别的的Rootfs.

        首先容器镜像是基于层级,一层一层只读层叠加最后合并组合为一个镜像。技术叫做联合文件系统,驱动名称为overlay2,在主机上的呈现为一个一个独立的目录。(每一层镜像可读层就是一个目录),编写dockerfile中每一个命令。RUN、COPY、CMD都是一层。

六、容器是怎么挂载和使用主机的Dir的?

        当容器启动时,会使用overlay2存储驱动将容器的LowerDir、UpperDir、WorkDir、MergedDir镜像合并,组成容器的Rootfs(进入容器后看到的就是Rootfs文件系统加上隔离的namespace容器的用户空间),并且在 Docker 中,当你使用 -v 或 --volume 参数将主机上的目录挂载到容器中时,Docker 实际上会在容器的 mount namespace 中创建一个新的挂载点,将主机上的目录挂载到这个新的挂载点上。这样,容器内的进程就能够通过这个挂载点来访问主机上的目录,实现文件共享和交互。

七、Docker 容器运行时组件的简要描述:

1. **Docker Client(Docker 客户端):**
   - Docker 客户端是用户与 Docker 交互的主要方式之一,它可以通过命令行或者 API 来与 Docker 交互。
   - Docker 客户端可以连接到 Docker 守护进程(Dockerd)并发送命令来管理容器、镜像、网络等资源。
   - Docker 客户端可以与 Docker 守护进程通过 REST API 或者 Unix 套接字进行通信。

2. **Dockerd(Docker 守护进程):**
   - Dockerd 是 Docker 的守护进程,负责管理容器的生命周期、镜像的存储和分发、网络的管理等。
   - Dockerd 通过监听 REST API 的请求来接收来自 Docker 客户端的命令,并执行相应的操作。
   - Dockerd 也可以与其他容器运行时组件,如 Containerd,进行交互。

3. **Containerd:**
   - Containerd 是一个用于管理容器生命周期的守护进程,是 Docker 中的一个核心组件。
   - Containerd 负责管理容器的创建、运行、暂停、停止、删除等操作,以及容器与宿主机资源的隔离。
   - Containerd 提供了 REST API,允许其他组件(如 Dockerd)通过 REST API 调用它的功能。

4. **Runc:**
   - Runc 是一个用于运行容器的工具,是 Open Container Initiative(OCI)规范的实现之一。
   - Runc 负责根据 OCI 规范创建和运行容器,它使用 Linux 的原生功能,如 cgroups、namespace 等来实现容器的隔离和运行。
   - Dockerd 使用 Runc 来启动容器,它通过调用 Runc 的接口来创建和管理容器的生命周期。

       下面是创建容器各个组件的交付:

  • Docker Client 使用 Unix 套接字或者 REST API 与 Dockerd 守护进程通信,向 Dockerd 发送命令以管理容器和其他 Docker 资源。

  • Dockerd 守护进程接收来自 Docker Client 的命令,并根据这些命令调用 Containerd 来管理容器的生命周期。

  • Containerd 负责实际的容器管理,包括创建、运行、停止、删除等操作。它通过 REST API 与 Dockerd 通信,接收来自 Dockerd 的命令。

  • 重点:

  • 当 Containerd 需要创建容器时,它会调用 Runc 来实际运行容器。Runc 使用系统调用(如 clone())来创建新的容器进程,并根据需要分配新的命名空间等资源。

八、虽然容器和主机使用不同的namespace,但他们使用相同的主机上的内核空间,就以为着他们共享主机上的物理计算资源。怎么做限制的?

        8.1 Cgroup简单介绍   

Cgroup(Control Groups)是 Linux 内核提供的一个功能,用于管理和限制进程对系统资源的使用。它主要用于计费、监视和限制进程对 CPU、内存、存储 IO、网络 IO 等资源的使用。

Cgroup 使用树状结构来组织资源的管理,每个分支代表一个子系统,而子系统则代表一个特定的资源,如 CPU、内存、存储 IO、网络 IO 等。进程被分配到适当的子系统中,以便对其资源使用进行管理。

在 Cgroup 中,每个进程都被保存在一个名为 tasks 的文件中,该文件位于相应子系统的目录下。通过编辑和配置 /sys/fs/cgroup 目录下的文件,可以对子系统和进程的资源使用进行调整和控制。

        8.2 那么默认情况下新创建的容器是不受资源限制的吗?

默认情况下,新创建的容器是不受资源限制的。当你使用 Docker 创建一个容器时,Docker 默认不会为该容器设置任何资源限制,容器可以使用主机上的所有资源,包括 CPU、内存、磁盘 IO、网络带宽等。

要为容器设置资源限制,你可以通过 Docker 的参数来指定容器的资源限制,如 --cpu--memory--cpus 等。你还可以使用 Docker Compose 文件或者 Kubernetes 的资源配置来设置容器的资源限制。通过设置这些参数,你可以限制容器使用的 CPU 资源数量、内存使用量等,以防止容器占用过多的系统资源。

这篇关于纯理论容器实现的原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1048460

相关文章

基于Python Playwright进行前端性能测试的脚本实现

《基于PythonPlaywright进行前端性能测试的脚本实现》在当今Web应用开发中,性能优化是提升用户体验的关键因素之一,本文将介绍如何使用Playwright构建一个自动化性能测试工具,希望... 目录引言工具概述整体架构核心实现解析1. 浏览器初始化2. 性能数据收集3. 资源分析4. 关键性能指

使用Redis快速实现共享Session登录的详细步骤

《使用Redis快速实现共享Session登录的详细步骤》在Web开发中,Session通常用于存储用户的会话信息,允许用户在多个页面之间保持登录状态,Redis是一个开源的高性能键值数据库,广泛用于... 目录前言实现原理:步骤:使用Redis实现共享Session登录1. 引入Redis依赖2. 配置R

SpringBoot实现RSA+AES自动接口解密的实战指南

《SpringBoot实现RSA+AES自动接口解密的实战指南》在当今数据泄露频发的网络环境中,接口安全已成为开发者不可忽视的核心议题,RSA+AES混合加密方案因其安全性高、性能优越而被广泛采用,本... 目录一、项目依赖与环境准备1.1 Maven依赖配置1.2 密钥生成与配置二、加密工具类实现2.1

在Java中实现线程之间的数据共享的几种方式总结

《在Java中实现线程之间的数据共享的几种方式总结》在Java中实现线程间数据共享是并发编程的核心需求,但需要谨慎处理同步问题以避免竞态条件,本文通过代码示例给大家介绍了几种主要实现方式及其最佳实践,... 目录1. 共享变量与同步机制2. 轻量级通信机制3. 线程安全容器4. 线程局部变量(ThreadL

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买