二分#背包#快排#LCS详解

2024-06-10 14:36
文章标签 详解 二分 背包 快排 lcs

本文主要是介绍二分#背包#快排#LCS详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

二分#背包#快排#LCS详解

文章目录

  • 二分#背包#快排#LCS详解
    • 1. 二分搜索
    • 2. 01背包问题
    • 3. 快速排序
    • 4. 最长公共子序列

1. 二分搜索

在处理大规模数据集时,查找操作的效率显得尤为重要。二分搜索是一种在有序数组中查找目标值的高效算法,其时间复杂度为O(log n)。

二分搜索通过每次比较目标值与数组中间元素的大小来缩小搜索范围。每次比较后,搜索范围缩小一半,直到找到目标值或搜索范围为空。

二分搜索适用于以下场景:

  1. 快速查找有序数组中的目标值。
  2. 数据库系统中常用二分搜索在B树或B+树索引中查找记录。
  3. 需要在算法中频繁查找数据的场景,如在排序数据中查找特定元素。

力扣 LCR 068. 搜索插入位置
给定一个排序的整数数组 nums 和一个整数目标值 target ,请在数组中找到 target ,并返回其下标。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。

请必须使用时间复杂度为 O(log n) 的算法。

示例 1:
输入: nums = [1,3,5,6], target = 5
输出: 2

示例 2:
输入: nums = [1,3,5,6], target = 2
输出: 1

示例 3:
输入: nums = [1,3,5,6], target = 7
输出: 4

示例 4:
输入: nums = [1,3,5,6], target = 0
输出: 0

示例 5:
输入: nums = [1], target = 0
输出: 0

提示:
1 <= nums.length <= 104
-104 <= nums[i] <= 104
nums 为无重复元素的升序排列数组
-104 <= target <= 104

案例代码

class Solution:def searchInsert(self, nums: List[int], target: int) -> int:l,r=0,len(nums)-1while l<=r:mid=(l+r)//2if nums[mid]==target:return midelif nums[mid]>target:r=mid-1else :l=mid+1return l

2. 01背包问题

C/C++详解地址:01背包和完全背包

背包问题是一类经典的优化问题,涉及在给定容量的背包中选择物品以使得背包内物品的总价值最大化。

0/1背包问题通过动态规划解决,使用一个二维数组 dp 来记录每个子问题的解。dp[i][w] 表示前 i 个物品在背包容量为 w 时的最大价值。

背包问题适用于以下场景:

  1. 在有限资源下,如何选择最优方案以获得最大收益。
  2. 在有限资金下选择投资组合以最大化收益。
  3. 在有限预算下选择项目组合以最大化回报。

例题
在这里插入图片描述

动态规划:

dp[i][j] = max(dp[i-1][j], dp[i-1][j-wi] + vi)

Python代码实现

n,v=map(int,input().split())
dp=[[0]*(v+1) for i in range(n+1)] # [[0]*cols for i in range(rows)]for i in range(1,n+1):wi,vi=map(int,input().split())for j in range(0,v+1):if j>=wi:dp[i][j]=max(dp[i-1][j],dp[i-1][j-wi]+vi)else:dp[i][j]=dp[i-1][j]print(dp[n][v])

3. 快速排序

快速排序是一种高效的排序算法,其平均时间复杂度为O(n log n)。快速排序通过分治法将数组分成两部分,递归地排序每部分。

快速排序通过选择一个基准元素(pivot),将数组分为两部分,一部分小于基准元素,另一部分大于基准元素。然后递归地对这两部分进行排序。

快速排序适用于以下场景:

  1. 处理大规模数据集的排序任务。
  2. 大多数编程语言的内置排序函数都采用了快速排序或其变种。
  3. 在数据分析和处理过程中,对数据进行排序以便后续操作。

力扣 4. 排序数组
给你一个整数数组 nums,请你将该数组升序排列。

示例 1:
输入:nums = [5,2,3,1]
输出:[1,2,3,5]

示例 2:
输入:nums = [5,1,1,2,0,0]
输出:[0,0,1,1,2,5]

提示:
1 <= nums.length <= 5 * 104
-5 * 104 <= nums[i] <= 5 * 104

python代码示例

class Solution:def sortArray(self, nums: List[int]) -> List[int]:def partition(arr, low, high):pivot = arr[low]                                        left, right = low, high     while left < right:while left<right and arr[right] >= pivot:          right -= 1arr[left] = arr[right]                             while left<right and arr[left] <= pivot:         left += 1arr[right] = arr[left]                        arr[left] = pivot          return leftdef randomPartition(arr, low, high):pivot_idx = random.randint(low, high)                   arr[low], arr[pivot_idx] = arr[pivot_idx], arr[low]     return partition(arr, low, high)def quickSort(arr, low, high):if low >= high:            return     mid = randomPartition(arr, low, high)   quickSort(arr, low, mid-1)            quickSort(arr, mid+1, high)quickSort(nums, 0, len(nums)-1)             return nums

4. 最长公共子序列

C/C++详解地址:LCS、LIS模型详解

最长公共子序列(LCS)是指在两个序列中,找出长度最长的公共子序列。

LCS通过动态规划解决,使用一个二维数组 dp 来记录每个子问题的解。dp[i][j] 表示 text1[0..i-1]text2[0..j-1] 的LCS长度。

LCS适用于以下场景:

  1. 文本比较:在文本处理和比较中,用于查找两个文本的相似度。
  2. 版本控制:在版本控制系统中,用于计算两个版本之间的差异。
  3. 生物信息学:在基因序列分析中,用于查找DNA序列的相似部分。

python代码示例

def LCS(a, b):n = len(a)m = len(b)dp = [[0] * (m + 1) for _ in range(n + 1)]for i in range(1, n + 1):for j in range(1, m + 1):if a[i - 1] == b[j - 1]:dp[i][j] = dp[i - 1][j - 1] + 1else:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])return dp[n][m]n,m=map(int,input().split())
a=list(map(int,input().split()))
b=list(map(int,input().split()))result = LCS(a, b)
print(result)

如果对Golang、Mysql、Linux感兴趣的小伙伴,也可以关注我的公众号0.o
在这里插入图片描述

这篇关于二分#背包#快排#LCS详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1048440

相关文章

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

MyBatis常用XML语法详解

《MyBatis常用XML语法详解》文章介绍了MyBatis常用XML语法,包括结果映射、查询语句、插入语句、更新语句、删除语句、动态SQL标签以及ehcache.xml文件的使用,感兴趣的朋友跟随小... 目录1、定义结果映射2、查询语句3、插入语句4、更新语句5、删除语句6、动态 SQL 标签7、ehc

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

Java中的.close()举例详解

《Java中的.close()举例详解》.close()方法只适用于通过window.open()打开的弹出窗口,对于浏览器的主窗口,如果没有得到用户允许是不能关闭的,:本文主要介绍Java中的.... 目录当你遇到以下三种情况时,一定要记得使用 .close():用法作用举例如何判断代码中的 input