Signac|成年小鼠大脑 单细胞ATAC分析(2)

2024-06-10 13:28

本文主要是介绍Signac|成年小鼠大脑 单细胞ATAC分析(2),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

在本教程中,我们将探讨由10x Genomics公司提供的成年小鼠大脑细胞的单细胞ATAC-seq数据集。本教程中使用的所有相关文件均可在10x Genomics官方网站上获取。

本教程复现了之前在人类外周血单核细胞(PBMC)的Signac入门教程中执行的命令。我们通过在不同的系统上进行相同的分析,来展示其性能以及对不同组织类型的适用性,并提供了一个来自不同物种的示例。

创建基因活动矩阵

# compute gene activities
gene.activities <- GeneActivity(brain)

# add the gene activity matrix to the Seurat object as a new assay
brain[['RNA']] <- CreateAssayObject(counts = gene.activities)
brain <- NormalizeData(
  object = brain,
  assay = 'RNA',
  normalization.method = 'LogNormalize',
  scale.factor = median(brain$nCount_RNA)
)

DefaultAssay(brain) <- 'RNA'
FeaturePlot(
  object = brain,
  features = c('Sst','Pvalb',"Gad2","Neurod6","Rorb","Syt6"),
  pt.size = 0.1,
  max.cutoff = 'q95',
  ncol = 3
)
alt

与 scRNA-seq 数据整合

为了更好地解读单细胞ATAC-seq数据,我们可以根据来自相同生物体系(即成年小鼠大脑)的单细胞RNA测序(scRNA-seq)实验结果,

# Load the pre-processed scRNA-seq data
allen_rna <- readRDS("../vignette_data/allen_brain.rds")
allen_rna <- UpdateSeuratObject(allen_rna)
allen_rna <- FindVariableFeatures(
  object = allen_rna,
  nfeatures = 5000
)

transfer.anchors <- FindTransferAnchors(
  reference = allen_rna,
  query = brain,
  reduction = 'cca',
  dims = 1:30
)

predicted.labels <- TransferData(
  anchorset = transfer.anchors,
  refdata = allen_rna$subclass,
  weight.reduction = brain[['lsi']],
  dims = 2:30
)

brain <- AddMetaData(object = brain, metadata = predicted.labels)

plot1 <- DimPlot(allen_rna, group.by = 'subclass', label = TRUE, repel = TRUE) + NoLegend() + ggtitle('scRNA-seq')
plot2 <- DimPlot(brain, group.by = 'predicted.id', label = TRUE, repel = TRUE) + NoLegend() + ggtitle('scATAC-seq')
plot1 + plot2
alt

您可以看到基于 RNA 的分类与 UMAP 可视化一致,仅根据 ATAC-seq 数据计算。

查找簇之间可差异访问的峰值

在这里,我们发现皮层不同层的兴奋性神经元之间的可访问区域存在差异。

#switch back to working with peaks instead of gene activities
DefaultAssay(brain) <- 'peaks'
Idents(brain) <- "predicted.id"

da_peaks <- FindMarkers(
  object = brain,
  ident.1 = c("L2/3 IT"), 
  ident.2 = c("L4""L5 IT""L6 IT"),
  test.use = 'LR',
  latent.vars = 'nCount_peaks'
)

head(da_peaks)
##                                  p_val avg_log2FC pct.1 pct.2    p_val_adj
## chr4-86523678-86525285    3.266647e-69   3.691294 0.426 0.037 5.135267e-64
## chr2-118700082-118704897  8.553383e-61   2.092487 0.648 0.182 1.344617e-55
## chr15-87605281-87607659   3.864918e-55   2.450827 0.499 0.097 6.075767e-50
## chr10-107751762-107753240 1.534485e-52   1.801355 0.632 0.192 2.412257e-47
## chr4-101303935-101305131  5.949521e-51   3.427059 0.356 0.031 9.352825e-46
## chr13-69329933-69331707   1.604991e-49  -2.254722 0.140 0.435 2.523094e-44

plot1 <- VlnPlot(
  object = brain,
  features = rownames(da_peaks)[1],
  pt.size = 0.1,
  idents = c("L4","L5 IT","L2/3 IT")
)
plot2 <- FeaturePlot(
  object = brain,
  features = rownames(da_peaks)[1],
  pt.size = 0.1,
  max.cutoff = 'q95'
)
plot1 | plot2
alt
open_l23 <- rownames(da_peaks[da_peaks$avg_log2FC > 3, ])
open_l456 <- rownames(da_peaks[da_peaks$avg_log2FC < 3, ])
closest_l23 <- ClosestFeature(brain, open_l23)
closest_l456 <- ClosestFeature(brain, open_l456)
head(closest_l23)

##                                 tx_id gene_name            gene_id
## ENSMUST00000151481 ENSMUST00000151481   Fam154a ENSMUSG00000028492
## ENSMUST00000131864 ENSMUST00000131864   Gm12796 ENSMUSG00000085721
## ENSMUST00000139527 ENSMUST00000139527     Yipf1 ENSMUSG00000057375
## ENSMUSE00001329193 ENSMUST00000185379   Gm29414 ENSMUSG00000099392
## ENSMUSE00000514286 ENSMUST00000077353      Hmbs ENSMUSG00000032126
## ENSMUST00000161356 ENSMUST00000161356      Reln ENSMUSG00000042453
##                      gene_biotype type           closest_region
## ENSMUST00000151481 protein_coding  gap   chr4-86487920-86538964
## ENSMUST00000131864        lincRNA  gap chr4-101292521-101318425
## ENSMUST00000139527 protein_coding  cds chr4-107345009-107345191
## ENSMUSE00001329193        lincRNA exon   chr1-25026581-25026779
## ENSMUSE00000514286 protein_coding exon   chr9-44344010-44344228
## ENSMUST00000161356 protein_coding  gap   chr5-21891568-21895988
##                                query_region distance
## ENSMUST00000151481   chr4-86523678-86525285        0
## ENSMUST00000131864 chr4-101303935-101305131        0
## ENSMUST00000139527 chr4-107344435-107345145        0
## ENSMUSE00001329193   chr1-25008426-25009334    17246
## ENSMUSE00000514286   chr9-44345250-44346015     1021
## ENSMUST00000161356   chr5-21894051-21894682        0

head(closest_l456)
##                                 tx_id gene_name            gene_id
## ENSMUST00000104937 ENSMUST00000104937   Ankrd63 ENSMUSG00000078137
## ENSMUSE00000647021 ENSMUST00000068088   Fam19a5 ENSMUSG00000054863
## ENSMUST00000165341 ENSMUST00000165341     Otogl ENSMUSG00000091455
## ENSMUST00000044081 ENSMUST00000044081     Papd7 ENSMUSG00000034575
## ENSMUST00000070198 ENSMUST00000070198    Ppp3ca ENSMUSG00000028161
## ENSMUST00000084628 ENSMUST00000084628    Hs3st2 ENSMUSG00000046321
##                      gene_biotype type            closest_region
## ENSMUST00000104937 protein_coding  cds  chr2-118702266-118703438
## ENSMUSE00000647021 protein_coding exon   chr15-87625230-87625486
## ENSMUST00000165341 protein_coding  utr chr10-107762223-107762309
## ENSMUST00000044081 protein_coding  utr   chr13-69497959-69499915
## ENSMUST00000070198 protein_coding  utr  chr3-136935226-136937727
## ENSMUST00000084628 protein_coding  cds  chr7-121392730-121393214
##                                 query_region distance
## ENSMUST00000104937  chr2-118700082-118704897        0
## ENSMUSE00000647021   chr15-87605281-87607659    17570
## ENSMUST00000165341 chr10-107751762-107753240     8982
## ENSMUST00000044081   chr13-69329933-69331707   166251
## ENSMUST00000070198  chr3-137056475-137058371   118747
## ENSMUST00000084628  chr7-121391215-121395519        0

绘制基因组区域

我们同样可以利用CoveragePlot()函数,根据不同的细胞聚类、细胞类型或对象中存储的其他任何元数据信息,为特定的基因组区域绘制出分组的覆盖度图。这些覆盖度图实际上是伪批量的可访问性轨迹图,通过将同一组内所有细胞的信号进行平均,从而在视觉上展示出特定区域内DNA的可访问性情况。

# show cell types with at least 50 cells
idents.plot <- names(which(table(Idents(brain)) > 50))

CoveragePlot(
  object = brain,
  region = c("Neurod6""Gad2"),
  idents = idents.plot,
  extend.upstream = 1000,
  extend.downstream = 1000,
  ncol = 1
)
alt

本文由 mdnice 多平台发布

这篇关于Signac|成年小鼠大脑 单细胞ATAC分析(2)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1048283

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串