AI网络爬虫:批量爬取豆瓣图书搜索结果

2024-06-10 12:20

本文主要是介绍AI网络爬虫:批量爬取豆瓣图书搜索结果,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

工作任务:爬取豆瓣图书搜索结果页面的全部图书信息

在ChatGPT中输入提示词:

你是一个Python编程专家,要完成一个爬虫Python脚本编写的任务,具体步骤如下:

用 fake-useragent库设置随机的请求头;

设置chromedriver的路径为:"D:\Program Files\chromedriver125\chromedriver.exe"

隐藏chromedriver特征;

设置selenium的窗口最大化;

请求标头:

Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7

Accept-Encoding:

gzip, deflate, br, zstd

Accept-Language:

zh-CN,zh;q=0.9,en;q=0.8

Connection:

keep-alive

Host:

http://search.douban.com

Referer:

https://search.douban.com/book/subject_search?search_text=chatgpt&cat=1001&start=0

Sec-Ch-Ua:

"Google Chrome";v="125", "Chromium";v="125", "Not.A/Brand";v="24"

Sec-Ch-Ua-Mobile:

?0

Sec-Ch-Ua-Platform:

"Windows"

Sec-Fetch-Dest:

document

Sec-Fetch-Mode:

navigate

Sec-Fetch-Site:

same-origin

Sec-Fetch-User:

?1

Upgrade-Insecure-Requests:

1

User-Agent:

Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/125.0.0.0 Safari/537.36

用selenium打开网页:https://search.douban.com/book/subject_search?search_text=chatgpt&cat=1001&start={pagenumber}

{pagenumber}的值从0开始,以15递增,到285结束;

定位xpath=//*[@id="root"]/div/div[2]/div[1]/div[1]/div[{number}]/div/div/div[1]/a的div标签,提取其文本内容({number}的值是从1到15),写入Excel表格第1列;

定位xpath=//*[@id="root"]/div/div[2]/div[1]/div[1]/div[{number}]/div/div/div[3]的div 标签,提取其文本内容({number}的值是从1到15),写入Excel表格第2列;

保存Excel,Excel文件名为:doubanChatGPT20240606.xlsx, 保存到文件夹:F:\AI自媒体内容\AI行业数据分析

注意:

每一步都要输出信息到屏幕

每爬取1条数据,随机暂停5-8秒;

每爬取完1页数据,随机暂停6-12秒;

设置请求头,以应对网站的反爬虫机制;

有些标签的内容可能为空,导致处理时程序报错,遇到为空标签就直接跳过,继续处理下一个标签;

DataFrame.append 方法在 pandas 1.4.0 版本中已经被弃用,并且在后续版本中被移除。为了解决这个问题,我们可以使用 concat 函数来代替 append;

当前使用的是 Selenium 4 或更高版本,executable_path 参数已经被 service 参数替代了;

忽略 SSL 错误:在 Chrome 选项中添加了 --ignore-certificate-errors 和 --ignore-ssl-errors。

增加错误处理,确保尽量多地捕获和处理异常。

在每次请求前更新 User-Agent。

无头模式:使用 --headless 参数在无头模式下运行,以减少干扰。如果需要在前台运行,可以移除此行。

随机暂停:在请求之间随机暂停,以避免反爬虫机制。

源代码:

import time

import random

import pandas as pd

from fake_useragent import UserAgent

from selenium import webdriver

from selenium.webdriver.chrome.service import Service

from selenium.webdriver.common.by import By

from selenium.webdriver.chrome.options import Options

# 设置chromedriver的路径

chromedriver_path = "D:\\Program Files\\chromedriver125\\chromedriver.exe"

# 创建随机请求头

ua = UserAgent()

# 设置Chrome选项

chrome_options = Options()

chrome_options.add_argument("--start-maximized")

chrome_options.add_argument("--ignore-certificate-errors")

chrome_options.add_argument("--ignore-ssl-errors")

chrome_options.add_argument("--allow-insecure-localhost")

chrome_options.add_argument("--disable-web-security")

chrome_options.add_argument("--disable-site-isolation-trials")

chrome_options.add_argument("--disable-gpu")

chrome_options.add_argument("--no-sandbox")

chrome_options.add_argument("--disable-dev-shm-usage")

chrome_options.add_argument("--headless") # 无头模式运行

# 隐藏chromedriver特征

chrome_options.add_experimental_option('excludeSwitches', ['enable-automation'])

chrome_options.add_experimental_option('useAutomationExtension', False)

# 初始化webdriver

service = Service(chromedriver_path)

driver = webdriver.Chrome(service=service, options=chrome_options)

# 设置请求头

headers = {

"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7",

"Accept-Encoding": "gzip, deflate, br, zstd",

"Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8",

"Connection": "keep-alive",

"Host": "http://search.douban.com",

"Referer": "https://search.douban.com/book/subject_search?search_text=chatgpt&cat=1001&start=0",

"Sec-Ch-Ua": '"Google Chrome";v="125", "Chromium";v="125", "Not.A/Brand";v="24"',

"Sec-Ch-Ua-Mobile": "?0",

"Sec-Ch-Ua-Platform": '"Windows"',

"Sec-Fetch-Dest": "document",

"Sec-Fetch-Mode": "navigate",

"Sec-Fetch-Site": "same-origin",

"Sec-Fetch-User": "?1",

"Upgrade-Insecure-Requests": "1",

"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/125.0.0.0 Safari/537.36"

}

# 数据存储列表

data = []

# 爬取网页数据

for pagenumber in range(0, 286, 15):

url = f"https://search.douban.com/book/subject_search?search_text=chatgpt&cat=1001&start={pagenumber}"

print(f"正在爬取页面: {url}")

# 更新 User-Agent

headers["User-Agent"] = ua.random

driver.execute_cdp_cmd('Network.setUserAgentOverride', {"userAgent": headers["User-Agent"]})

driver.get(url)

# 随机暂停以防止反爬

time.sleep(random.uniform(6, 12))

for number in range(1, 16):

try:

# 定位书名的div标签

try:

book_title_xpath = f'//*[@id="root"]/div/div[2]/div[1]/div[1]/div[{number}]/div/div/div[1]/a'

book_title = driver.find_element(By.XPATH, book_title_xpath).text

except Exception as e:

book_title = ""

print(f"无法找到书名,错误: {e}")

# 定位描述的div标签

try:

book_desc_xpath = f'//*[@id="root"]/div/div[2]/div[1]/div[1]/div[{number}]/div/div/div[3]'

book_desc = driver.find_element(By.XPATH, book_desc_xpath).text

except Exception as e:

book_desc = ""

print(f"无法找到描述,错误: {e}")

# 添加数据到列表

data.append([book_title, book_desc])

print(f"爬取到数据: {book_title}, {book_desc}")

# 随机暂停以防止反爬

time.sleep(random.uniform(5, 8))

except Exception as e:

print(f"跳过因错误: {e}")

continue

# 将数据写入Excel文件

columns = ["书名", "描述"]

df = pd.DataFrame(data, columns=columns)

output_path = "F:\\AI自媒体内容\\AI行业数据分析\\doubanChatGPT20240606.xlsx"

df.to_excel(output_path, index=False)

print(f"数据已保存到Excel文件:{output_path}")

driver.quit()

这篇关于AI网络爬虫:批量爬取豆瓣图书搜索结果的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1048149

相关文章

Spring AI使用tool Calling和MCP的示例详解

《SpringAI使用toolCalling和MCP的示例详解》SpringAI1.0.0.M6引入ToolCalling与MCP协议,提升AI与工具交互的扩展性与标准化,支持信息检索、行动执行等... 目录深入探索 Spring AI聊天接口示例Function CallingMCPSTDIOSSE结束语

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

linux批量替换文件内容的实现方式

《linux批量替换文件内容的实现方式》本文总结了Linux中批量替换文件内容的几种方法,包括使用sed替换文件夹内所有文件、单个文件内容及逐行字符串,强调使用反引号和绝对路径,并分享个人经验供参考... 目录一、linux批量替换文件内容 二、替换文件内所有匹配的字符串 三、替换每一行中全部str1为st

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自

Python自动化批量重命名与整理文件系统

《Python自动化批量重命名与整理文件系统》这篇文章主要为大家详细介绍了如何使用Python实现一个强大的文件批量重命名与整理工具,帮助开发者自动化这一繁琐过程,有需要的小伙伴可以了解下... 目录简介环境准备项目功能概述代码详细解析1. 导入必要的库2. 配置参数设置3. 创建日志系统4. 安全文件名处

三频BE12000国补到手2549元! ROG 魔盒Pro WIFI7电竞AI路由器上架

《三频BE12000国补到手2549元!ROG魔盒ProWIFI7电竞AI路由器上架》近日,华硕带来了ROG魔盒ProWIFI7电竞AI路由器(ROGSTRIXGR7Pro),目前新... 华硕推出了ROG 魔盒Pro WIFI7电竞AI路由器(ROG STRIX GR7 Phttp://www.cppcn

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

利用Python脚本实现批量将图片转换为WebP格式

《利用Python脚本实现批量将图片转换为WebP格式》Python语言的简洁语法和库支持使其成为图像处理的理想选择,本文将介绍如何利用Python实现批量将图片转换为WebP格式的脚本,WebP作为... 目录简介1. python在图像处理中的应用2. WebP格式的原理和优势2.1 WebP格式与传统

HTML5 搜索框Search Box详解

《HTML5搜索框SearchBox详解》HTML5的搜索框是一个强大的工具,能够有效提升用户体验,通过结合自动补全功能和适当的样式,可以创建出既美观又实用的搜索界面,这篇文章给大家介绍HTML5... html5 搜索框(Search Box)详解搜索框是一个用于输入查询内容的控件,通常用于网站或应用程