【数据结构(邓俊辉)学习笔记】图07——最短路径

2024-06-10 11:28

本文主要是介绍【数据结构(邓俊辉)学习笔记】图07——最短路径,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 0. 概述
  • 1. 问题
  • 2. 最短路径
    • 2.1 最短路径树
      • 2.1.1 单调性
      • 2.1.2 歧义性
      • 2.1. 3 无环性
    • 2.2 Dijkstra 算法
      • 2.2.1 贪心迭代
      • 2.2.2 实现
      • 2.2.3 实例
      • 2.2.4 复杂度

0. 概述

学习下最短路径和Dijistra算法

1. 问题

在这里插入图片描述
给定带权网络G = (V, E),以及源点(source)s ∈ V,对于所有的其它顶点v,s到v的最短通路有多长?该通路由哪些边构成?

2. 最短路径

2.1 最短路径树

2.1.1 单调性

在这里插入图片描述
设顶点s到v的最短路径为 ρ \rho ρ。于是对于该路径上的任一顶点u,若其在 ρ \rho ρ上对应的前缀为 σ \sigma σ,则 σ \sigma σ也必
是s到u的最短路径(之一)。

2.1.2 歧义性

较之最小支撑树,最短路径的歧义性更难处理。首先,即便各边权重互异,从s到v的最短路径也未必唯一。另外,当存在非正权重的边,并导致某个环路的总权值非正时,最短路径甚至无从定义。因此以下不妨假定,带权网络G内各边权重均大于零。

2.1. 3 无环性

在这里插入图片描述考查从源点到其余顶点的最短路径(若有多条,任选其一)。于是由以上单调性,这些路径的并集必然不含任何(有向)回路。这就意味着,如图所示,构成所谓的最短路径树(shortest-path tree)。

2.2 Dijkstra 算法

2.2.1 贪心迭代

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

上述思路可知,只要能够确定 u k + 1 u_{k+1} uk+1,便可反过来将 T k T_k Tk扩展为 T k + 1 T_{k+1} Tk+1。如此,便可按照到s距离的非降次序,逐一确定各个顶点{ u 1 u_1 u1, u 2 u_2 u2, …, u n u_n un},同时得到各棵最短路径子树,并得到最终的最短路径树T = T n T_n Tn。现在,问题的关键就在于:
~~~~~~~~~~~~~~~~~~                   如何才能高效地找到 u k + 1 u_{k+1} uk+1
实际上,由最短路径子树序列的上述性质,每一个顶点 u k + 1 u_{k+1} uk+1都是在 T k T_k Tk之外,距离s最近者。若将此距离作为各顶点的优先级数,则与最小支撑树的Prim算法类似,每次将 u k + 1 u_{k+1} uk+1加入 T k T_k Tk并将其拓展至 T k + 1 T_{k+1} Tk+1后,需要且只需要更新那些仍在 T k + 1 T_{k+1} Tk+1之外,且与 T k + 1 T_{k+1} Tk+1关联的顶点的优先级数。

可见,该算法与Prim算法仅有一处差异:考虑的是 u k + 1 u_{k+1} uk+1到s的距离,而不再是其到 T k T_k Tk的距离。

2.2.2 实现

与Prim算法一样,Dijkstra算法也可纳入此前的优先级搜索算法框架。

在这里插入图片描述

为此,每次由 T k T_k Tk扩展至 T k + 1 T_{k+1} Tk+1时,可将 V k V_k Vk之外各顶点u到 V k V_k Vk的距离看作u的优先级数(若u与 V k V_k Vk内顶点均无联边,则优先级数设为+∞)。如此,每一最短跨越边 e k e_k ek所对应的顶点 u k u_k uk,都会因拥有最小的优先级数(或等价地,最高的优先级)而被选中。

在这里插入图片描述
唯一需要专门处理的是,在 u k u_k uk e k e_k ek加入 T k T_k Tk之后,应如何快速地更新 V k + 1 V_{k+1} Vk+1以外顶点的优先级数。实际上,只有与 u k u_k uk邻接的那些顶点,才有可能在此后降低优先级数。因此与Prim算法一样,也可遍历 u k u_k uk的每一个邻居v,只要边 u k v u_kv ukv的权重加上 u k u_k uk的优先级数,小于v当前的优先级数,即可将后者更新为前者。

2.2.3 实例

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.2.4 复杂度

不难看出,以上顶点优先级更新器只需常数运行时间。同样根据对PFS搜索性能的分析结论,Dijkstra算法这一实现版本的时间复杂度为O( n 2 n^2 n2)。

作为PFS搜索的特例,Dijkstra算法的效率也可借助优先级队列进一步提高。

这篇关于【数据结构(邓俊辉)学习笔记】图07——最短路径的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1048033

相关文章

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

VSCode设置python SDK路径的实现步骤

《VSCode设置pythonSDK路径的实现步骤》本文主要介绍了VSCode设置pythonSDK路径的实现步骤,包括命令面板切换、settings.json配置、环境变量及虚拟环境处理,具有一定... 目录一、通过命令面板快速切换(推荐方法)二、通过 settings.json 配置(项目级/全局)三、

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)

《如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)》:本文主要介绍如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)问题,具有很好的参考价值,希望对大家有所帮助,如有... 目录先在你打算存放的地方建四个文件夹更改这四个路径就可以修改默认虚拟内存分页js文件的位置接下来从高级-

一文详解如何查看本地MySQL的安装路径

《一文详解如何查看本地MySQL的安装路径》本地安装MySQL对于初学者或者开发人员来说是一项基础技能,但在安装过程中可能会遇到各种问题,:本文主要介绍如何查看本地MySQL安装路径的相关资料,需... 目录1. 如何查看本地mysql的安装路径1.1. 方法1:通过查询本地服务1.2. 方法2:通过MyS

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

Python如何调用指定路径的模块

《Python如何调用指定路径的模块》要在Python中调用指定路径的模块,可以使用sys.path.append,importlib.util.spec_from_file_location和exe... 目录一、sys.path.append() 方法1. 方法简介2. 使用示例3. 注意事项二、imp

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1