LLM中完全消除矩阵乘法,效果惊人!10亿参数在FPGA上运行功耗接近大脑!!

本文主要是介绍LLM中完全消除矩阵乘法,效果惊人!10亿参数在FPGA上运行功耗接近大脑!!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!



一直以来,矩阵乘法(MatMul)在神经网络操作中占据主导地位,主要因为GPU针对MatMul进行了优化。

老黄一举揭秘三代GPU!打破摩尔定律,打造AI帝国,量产Blackwell解决ChatGPT全球耗电难题


这种优化使得AlexNet在ILSVRC2012挑战赛中脱颖而出,成为深度学习崛起的历史性标志。


GPT-4o深夜发布!Plus免费可用!icon-default.png?t=N7T8https://www.zhihu.com/pin/1773645611381747712

没体验过OpenAI最新版GPT-4o?快戳最详细升级教程,几分钟搞定:

升级ChatGPT-4o Turbo步骤icon-default.png?t=N7T8https://www.zhihu.com/pin/1768399982598909952

  • 论文地址:https://arxiv.org/pdf/2406.02528

  • 项目地址:https://github.com/ridgerchu/matmulfreellm


值得注意的是,AlexNet利用GPU提高了训练速度,超越了CPU的能力,使深度学习仿佛赢得了「硬件彩票」。

尽管MatMul在深度学习中很流行,但它占据了计算开销的主要部分,尤其是在训练和推理阶段消耗了大部分执行时间和内存访问。

研究者已经开始使用其他更简单的操作替代MatMul,主要有两种策略:

1. 使用初等运算代替MatMul,例如在卷积神经网络(CNN)中,用有符号加法代替乘法;

2. 使用二值或三值化量化,将MatMul值在累加之前翻转或清零。例如,脉冲神经网络(SNN)使用二值激活,而二值化网络(BNN)使用量化权重。



在语言建模方面,BitNet等技术表明量化的可扩展性,但这种方式仍然保留了昂贵的矩阵-矩阵相乘(MMM)的自注意力机制。

尽管研究者尝试了多种方法,但MatMul操作在GPU上仍然是资源密集型的。

由于MatMul占据了LLM整体计算成本,且随着LLM向更大的嵌入维度和上下文长度扩展,这种成本只会增加。

这引发了一个问题:是否有可能完全从LLM中消除MatMul操作?


在这项工作中,加州大学圣克鲁兹分校等机构的研究者证明了MatMul操作可以完全从LLM中消除,同时在十亿参数规模下保持强大的性能。

实验表明,该研究提出的MatMul-free模型达到了与最先进的Transformer相当的性能,后者在推理期间需要更多的内存,规模至少为2.7B参数。



此外,论文还研究了扩展定律,发现随着模型规模的增加,MatMul-free模型与全精度Transformer之间的性能差距逐渐缩小。

研究者还提供了一种高效的GPU模型实现方式,在训练期间相比未优化的基线模型减少了多达61%的内存使用。通过在推理时利用优化的内核,模型内存消耗可以比未优化的模型减少超过10倍。


最后,研究者在FPGA上构建了一个自定义硬件解决方案,以13W的功耗处理了十亿参数规模的模型,超出了人类可读的吞吐量,使LLM更接近大脑般的效率。

研究人员根据训练时间和内存使用情况评估了他们提出的融合型 BitLinear 和传统型 BitLinear 实现.

实验表明,他们的融合操作器在更大的批量大小下,能够带来更快的训练速度,并减少内存消耗。

当批量大小为 2 的 8 次方时,1.3B 参数模型的训练速度从每次迭代 1.52 秒提高到 1.21 秒,比 Vanilla 实现快了 25.6%。



推荐阅读:



如何免费使用GPT-4o?如何升级GPT...



更强大Mamba-2正式发布啦!!!



黎曼猜想取得重大进展!!

这篇关于LLM中完全消除矩阵乘法,效果惊人!10亿参数在FPGA上运行功耗接近大脑!!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1046252

相关文章

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter

全网最全Tomcat完全卸载重装教程小结

《全网最全Tomcat完全卸载重装教程小结》windows系统卸载Tomcat重新通过ZIP方式安装Tomcat,优点是灵活可控,适合开发者自定义配置,手动配置环境变量后,可通过命令行快速启动和管理... 目录一、完全卸载Tomcat1. 停止Tomcat服务2. 通过控制面板卸载3. 手动删除残留文件4.

Java JUC并发集合详解之线程安全容器完全攻略

《JavaJUC并发集合详解之线程安全容器完全攻略》Java通过java.util.concurrent(JUC)包提供了一整套线程安全的并发容器,它们不仅是简单的同步包装,更是基于精妙并发算法构建... 目录一、为什么需要JUC并发集合?二、核心并发集合分类与详解三、选型指南:如何选择合适的并发容器?在多

C#中通过Response.Headers设置自定义参数的代码示例

《C#中通过Response.Headers设置自定义参数的代码示例》:本文主要介绍C#中通过Response.Headers设置自定义响应头的方法,涵盖基础添加、安全校验、生产实践及调试技巧,强... 目录一、基础设置方法1. 直接添加自定义头2. 批量设置模式二、高级配置技巧1. 安全校验机制2. 类型

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

SpringBoot 获取请求参数的常用注解及用法

《SpringBoot获取请求参数的常用注解及用法》SpringBoot通过@RequestParam、@PathVariable等注解支持从HTTP请求中获取参数,涵盖查询、路径、请求体、头、C... 目录SpringBoot 提供了多种注解来方便地从 HTTP 请求中获取参数以下是主要的注解及其用法:1

HTTP 与 SpringBoot 参数提交与接收协议方式

《HTTP与SpringBoot参数提交与接收协议方式》HTTP参数提交方式包括URL查询、表单、JSON/XML、路径变量、头部、Cookie、GraphQL、WebSocket和SSE,依据... 目录HTTP 协议支持多种参数提交方式,主要取决于请求方法(Method)和内容类型(Content-Ty

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

Python ORM神器之SQLAlchemy基本使用完全指南

《PythonORM神器之SQLAlchemy基本使用完全指南》SQLAlchemy是Python主流ORM框架,通过对象化方式简化数据库操作,支持多数据库,提供引擎、会话、模型等核心组件,实现事务... 目录一、什么是SQLAlchemy?二、安装SQLAlchemy三、核心概念1. Engine(引擎)