keras 使用tensorboard记录训练日志与结果

2024-06-09 20:08

本文主要是介绍keras 使用tensorboard记录训练日志与结果,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.每个epoch结束记录

只需要在fit的时候加上callbacks=[TensorBoard(log_dir='./tmp/log')] 这一句就可以将运行的结果记录下来了。

2.自定义每个batch记录损失函数

class Mylosscallback(Callback):def __init__(self, log_dir):super(Callback, self).__init__()self.val_writer = tf.summary.FileWriter(log_dir)self.num=0def on_train_begin(self, logs={}):self.losses = []def on_batch_end(self, batch, logs={}):self.num=self.num+1val_loss=logs.get('loss')# print(1111)val_loss_summary = tf.Summary()val_loss_summary_value = val_loss_summary.value.add()val_loss_summary_value.simple_value = val_lossval_loss_summary_value.tag = 'loss'self.val_writer.add_summary(val_loss_summary, self.num)self.val_writer.flush()

callbacks=[Mylosscallback(log_dir='./tmp/log')]

3.更加科学的保存模型

filepath = 'model-ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5'
checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=1, save_best_only=True, mode='min')

这样设置会生成多个h5文件,若filepath='mymodel.h5'则只会生成一个文件,同时save_best_only打开之后,如果val_loss 提高了就会保存,没有提高就不会保存。

4.keras模型包括model和weight两个部分

保存model方法一 JSON文件:

model_json = model.to_json()  
with open("model.json", "w") as json_file:     
json_file.write(model_json)  

保存model方法二 Yaml文件:

 yaml_string = model.to_yaml()   

保存weight方法一 h5文件:

model.save_weights("modelweight.h5")

同时保存model和weight

model.save('model.h5') 

加载model:

#json model load
json_file = open('model.json', 'r')  
loaded_model_json = json_file.read()   
json_file.close()   
loaded_model = model_from_json(loaded_model_json)
#h5 model load
from keras.models import load_model      
model = load_model('model.h5')   #weight load
loaded_model.load_weights("model.h5")   

 

这篇关于keras 使用tensorboard记录训练日志与结果的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1046176

相关文章

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Spring配置扩展之JavaConfig的使用小结

《Spring配置扩展之JavaConfig的使用小结》JavaConfig是Spring框架中基于纯Java代码的配置方式,用于替代传统的XML配置,通过注解(如@Bean)定义Spring容器的组... 目录JavaConfig 的概念什么是JavaConfig?为什么使用 JavaConfig?Jav

Python中4大日志记录库比较的终极PK

《Python中4大日志记录库比较的终极PK》日志记录框架是一种工具,可帮助您标准化应用程序中的日志记录过程,:本文主要介绍Python中4大日志记录库比较的相关资料,文中通过代码介绍的非常详细,... 目录一、logging库1、优点2、缺点二、LogAid库三、Loguru库四、Structlogphp

Java使用Spire.Doc for Java实现Word自动化插入图片

《Java使用Spire.DocforJava实现Word自动化插入图片》在日常工作中,Word文档是不可或缺的工具,而图片作为信息传达的重要载体,其在文档中的插入与布局显得尤为关键,下面我们就来... 目录1. Spire.Doc for Java库介绍与安装2. 使用特定的环绕方式插入图片3. 在指定位

Springboot3 ResponseEntity 完全使用案例

《Springboot3ResponseEntity完全使用案例》ResponseEntity是SpringBoot中控制HTTP响应的核心工具——它能让你精准定义响应状态码、响应头、响应体,相比... 目录Spring Boot 3 ResponseEntity 完全使用教程前置准备1. 项目基础依赖(M

Java使用Spire.Barcode for Java实现条形码生成与识别

《Java使用Spire.BarcodeforJava实现条形码生成与识别》在现代商业和技术领域,条形码无处不在,本教程将引导您深入了解如何在您的Java项目中利用Spire.Barcodefor... 目录1. Spire.Barcode for Java 简介与环境配置2. 使用 Spire.Barco

Android使用java实现网络连通性检查详解

《Android使用java实现网络连通性检查详解》这篇文章主要为大家详细介绍了Android使用java实现网络连通性检查的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录NetCheck.Java(可直接拷贝)使用示例(Activity/Fragment 内)权限要求

C# 预处理指令(# 指令)的具体使用

《C#预处理指令(#指令)的具体使用》本文主要介绍了C#预处理指令(#指令)的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1、预处理指令的本质2、条件编译指令2.1 #define 和 #undef2.2 #if, #el

C#中Trace.Assert的使用小结

《C#中Trace.Assert的使用小结》Trace.Assert是.NET中的运行时断言检查工具,用于验证代码中的关键条件,下面就来详细的介绍一下Trace.Assert的使用,具有一定的参考价值... 目录1、 什么是 Trace.Assert?1.1 最简单的比喻1.2 基本语法2、⚡ 工作原理3

C# IPAddress 和 IPEndPoint 类的使用小结

《C#IPAddress和IPEndPoint类的使用小结》本文主要介绍了C#IPAddress和IPEndPoint类的使用小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定... 目录一、核心作用网络编程基础类二、IPAddress 类详解三种初始化方式1. byte 数组初始化2. l