【PL理论】(12) F#:模块 | 命名空间 | 异常处理 | 内置异常 |:? | 相互递归函数

本文主要是介绍【PL理论】(12) F#:模块 | 命名空间 | 异常处理 | 内置异常 |:? | 相互递归函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

  • 💭 写在前面:本章我们将介绍 F# 的模块,我们前几章讲的列表、集合和映射都是模块。然后我们将介绍 F# 中的异常,以及内置异常,最后再讲解一下相互递归函数。

目录

0x00 F# 模块(Module)

0x01 F# 异常处理(Exception)

0x02 内置异常(Built-in Exceptions)

0x03 相互递归函数

0x04 通过泰勒级数展开来逼近计算 e^x


0x00 F# 模块(Module)

用于代码组织和抽象的特性,模块 (Module) 就是相关类型、值和函数的集合。

类似于面向对象编程中的类,但没有对象的概念。

比如我们说的的列表、集合和映射都是模块。

在这个章节后,我会给出一点练习题,方便大家更好地掌握 F# 基础。

为了方便大家没有负担地有效练习,我会在框架代码中勾勒出模块,你只需要填写就行了:

namespace DataStructuremodule Queue =type t = int list * int listlet empty: t = ([], [])let enqueue (i: int) (queue: t) = ...

另外,这个 namespace 就是命名空间,类似于 C++。

0x01 F# 异常处理(Exception)

F# 中也是可以 raise 捕获异常的,raise ... 会被求值为一个异常并传播。

使用 try-with 来捕获引发的异常,异常会被视为 any type,可以是任何类型 ( `a ) 。 

exception DivByZerolet div (x: int) (y: int) : int =if y = 0 then raise DivByZero else x / ylet printDiv (x: int) (y: int) : unit =try printfn "%d" (div x y) with| DivByZero -> printfn "Divisor is zero" 

0x02 内置异常(Built-in Exceptions)

F# 有不少预定义的异常,要捕获这些错误,你必须使用 |:? 

这是因为 F# 与 C# (.NET) 都是一个爹有着密不可分的关系。

这里提供几种还不错的选择,让你避免记住这些复杂的异常名称:

let doFind1 (k: string) (m: Map<string,int>) : int =try Map.find k m with| :? System.Collections.Generic.KeyNotFoundException -> 0let doFind2 (k: string) (m: Map<string,int>) : int =if Map.containsKey k m then Map.find k m else 0let doFind3 (k: string) (m: Map<string,int>) : int =match Map.tryFind k m with| None -> 0 | Some i -> i

0x03 相互递归函数

相互递归函数 (Mutually Recursive Function),指的是多个函数可以相互递归调用。

简单来说就是你递归调用我,我递归调用你,用 let rec ... and 语法来定义这样的函数。

💬 举个例子:我们来定义三个相互递归的函数

let rec f x =x + g (x - 1)and g y =if y <= 1 then 1 else y * h (y - 1)and h z =if z <= 2 then 0 else f (z - 1) + f (z - 2)

这段代码定义了三个相互递归的函数 f,g,h,它们彼此之间互相调用。

形成了一个循环,每个函数的返回值都依赖于其他函数的返回值,从而实现了相互递归。

0x04 通过泰勒级数展开来逼近计算 e^x

通过泰勒级数展开来逼近计算 e^x

① 首先计算 n 的阶乘:

n!=n\times (n-1)\times(n-2)\times...\times2\times1

我们定义一个递归函数 Fac 计算一个非负整数的阶乘,当输入值 n\leq 1 时,返回1。

否则,返回 n 乘以 (n-1)  的阶乘。

在 Tylor 函数中,Fac 被用来计算泰勒级数展开的分母部分,即 n!  。

② 再通过泰勒级数展开公式 (以 e 为底的指数函数) ,我们展开前十项:

e^x=\sum_{n=0 }^{\infty }\frac{x^n}{n!}\, \, \, \Rightarrow \, \, \, e^x\approx \sum_{n=0 }^{10}\frac{x^n}{n!}

再定义一个递归函数 Taylor 计算 e^x 的泰勒级数展开,当展开的级数项数 n=0 时,返回 1.0

否则计算 x^n/n!  并加上递归调用 Taylor 函数计算更低阶的项。

在 Taylor 函数中,Fac 函数被用来计算每一项的阶乘。

💬 代码演示:通过泰勒级数展开来逼近计算 e^x

let rec Fac n =if n <= 1 then 1else n * Fac (n - 1)let rec Taylor x n =if n = 0 then 1.0else (float x ** float n) / float (Fac n) + Taylor x (n - 1)// 计算 e^x 的值
let calculateExponential x =if System.Double.IsNaN(x) || System.Double.IsInfinity(x) theninvalidArg "x" "x must be a finite number"elseTaylor x 10  // 前10项

这两个函数就相互递归了,因为 Taylor 调用了 Fac 来计算阶乘,而 Fac 也会调用 Taylor。

你可以发现,我们没有使用刚才讲的 "0x03 相互递归",let rec ... and。

因为每次计算阶乘都会重新计算泰勒级数的一部分,导致大量的重复计算:

let rec Fac n =if n <= 1 then 1else n * Taylor (n - 1) 1and Taylor x n =if n = 0 then 1.0else (float x ** float n) / float (Fac n) + Taylor x (n - 1)// 计算 e^x 的值
let calculateExponential x =if System.Double.IsNaN(x) || System.Double.IsInfinity(x) theninvalidArg "x" "x must be a finite number"elseTaylor x 10  // 前10项// 测试计算函数
let result = calculateExponential 1.0
printfn "e^1 的值近似为: %f" result


📌 [ 笔者 ]   王亦优
📃 [ 更新 ]   2024.6.16
❌ [ 勘误 ]   /* 暂无 */
📜 [ 声明 ]   由于作者水平有限,本文有错误和不准确之处在所难免,本人也很想知道这些错误,恳望读者批评指正!

📜 参考资料 

Microsoft. MSDN(Microsoft Developer Network)[EB/OL]. []. .

这篇关于【PL理论】(12) F#:模块 | 命名空间 | 异常处理 | 内置异常 |:? | 相互递归函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1046122

相关文章

Spring Boot @RestControllerAdvice全局异常处理最佳实践

《SpringBoot@RestControllerAdvice全局异常处理最佳实践》本文详解SpringBoot中通过@RestControllerAdvice实现全局异常处理,强调代码复用、统... 目录前言一、为什么要使用全局异常处理?二、核心注解解析1. @RestControllerAdvice2

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Java进程异常故障定位及排查过程

《Java进程异常故障定位及排查过程》:本文主要介绍Java进程异常故障定位及排查过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、故障发现与初步判断1. 监控系统告警2. 日志初步分析二、核心排查工具与步骤1. 进程状态检查2. CPU 飙升问题3. 内存

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

MySQL之InnoDB存储页的独立表空间解读

《MySQL之InnoDB存储页的独立表空间解读》:本文主要介绍MySQL之InnoDB存储页的独立表空间,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、独立表空间【1】表空间大小【2】区【3】组【4】段【5】区的类型【6】XDES Entry区结构【

javax.net.ssl.SSLHandshakeException:异常原因及解决方案

《javax.net.ssl.SSLHandshakeException:异常原因及解决方案》javax.net.ssl.SSLHandshakeException是一个SSL握手异常,通常在建立SS... 目录报错原因在程序中绕过服务器的安全验证注意点最后多说一句报错原因一般出现这种问题是因为目标服务器

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

电脑提示xlstat4.dll丢失怎么修复? xlstat4.dll文件丢失处理办法

《电脑提示xlstat4.dll丢失怎么修复?xlstat4.dll文件丢失处理办法》长时间使用电脑,大家多少都会遇到类似dll文件丢失的情况,不过,解决这一问题其实并不复杂,下面我们就来看看xls... 在Windows操作系统中,xlstat4.dll是一个重要的动态链接库文件,通常用于支持各种应用程序

SQL Server数据库死锁处理超详细攻略

《SQLServer数据库死锁处理超详细攻略》SQLServer作为主流数据库管理系统,在高并发场景下可能面临死锁问题,影响系统性能和稳定性,这篇文章主要给大家介绍了关于SQLServer数据库死... 目录一、引言二、查询 Sqlserver 中造成死锁的 SPID三、用内置函数查询执行信息1. sp_w