Architecture of a Database System

2024-06-09 14:18

本文主要是介绍Architecture of a Database System,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Foundations and Trends in Databases
Vol. 1, No. 2 (2007) 141–259
2007 J. M. Hellerstein, M. Stonebraker and J. Hamilton
DOI: 10.1561/1900000002
Abstract
Database Management Systems (DBMSs) are a ubiquitous [juːˈbɪkwɪtəs] 似乎无所不在的/十分普遍的 and critical component of modern computing, and the result of decades of research and development in both academia [ˌækəˈdiːmiə] 学术界 and industry. Historically adv. 历史上地/从历史观点上说, DBMSs were among the earliest multi-user server systems to be developed, and thus pioneered 当开拓者/做先锋/倡导 many systems design techniques for scalability [skeɪləˈbɪlɪti]可扩展性/可伸缩性/可量测性 and reliability 可靠性 now in use in many other contexts. While many of the algorithms and abstractions used by a DBMS are textbook material, there has been relatively sparse 稀少的/稀疏的/零落的 coverage in the literature 文学/文学作品/(某学科的) 文献/著作/资料 of the systems design issues that make a DBMS work. This paper presents an architectural discussion of DBMS design principles, including process models, parallel architecture, storage system design, transaction system implementation, query processor and optimizer architectures, and typical shared components and utilities. Successful commercial and open-source systems are used as points of reference, particularly when multiple alternative designs have been adopted by different groups.

1 Introduction
Database Management Systems (DBMSs) are complex, mission-critical
software systems. Today’s DBMSs embody decades of academic and industrial research and intense 很大的/十分强烈的/严肃紧张的/激烈的 corporate software development. Database systems were among the earliest widely deployed online server systems and, as such, have pioneered design solutions spanning not only data management, but also applications, operating systems, and networked services. The early DBMSs are among the most influential software systems in computer science, and the ideas and implementation issues pioneered for DBMSs are widely copied and reinvented.
For a number of reasons, the lessons 一节课/一课时/课/教学单元/经验/ 教训of database systems architecture are not as broadly known as they should be. First, the applied database systems community is fairly small. Since market forces only support a few competitors at the high end, only a handful of successful DBMS implementations exist. The community of people involved in designing and implementing database systems is tight: many attended the same schools, worked on the same influential 有很大影响的/有支配力的 research projects, and collaborated on the same commercial products. Second, academic treatment of database systems often ignores architectural issues. Textbook presentations of database systems traditionally focus on algorithmic 算法的/规则系统的 and theoretical [ˌθɪəˈretɪkl] 理论上的/理论上存在的/假设的 issues — which are natural to teach, study, and test —without a holistic [həˈlɪstɪk] 整体的/全面的/功能整体性的 discussion of system architecture in full implementations. In sum, much conventional wisdom about how to build database systems is available, but little of it has been written down or communicated broadly.
algorithm [ˈælɡərɪðəm] 算法/计算程序

In this paper, we attempt to capture the main architectural aspects
of modern database systems, with a discussion of advanced topics. Some of these appear in the literature, and we provide references where appropriate. Other issues are buried in product manuals, and some are simply part of the oral tradition of the community. Where applicable, we use commercial and open-source systems as examples of the various architectural forms discussed. Space prevents, however, the enumeration 列举事实/逐条陈述/详叙/细目/(详)表 of the exceptions and finer nuances 细微的差别 that have found their way into these multi-million line code bases, most of which are well over a decade old.
Our goal here is to focus on overall system design and stress issues not typically discussed in textbooks, providing useful context for more widely known algorithms and concepts. We assume that the reader is familiar with textbook database systems material (e.g., [72] or [83]) and with the basic facilities of modern operating systems such as UNIX, Linux, or Windows. After introducing the high-level architecture of a DBMS in the next section, we provide a number of references to background reading on each of the components in Section 1.2.
1.1 Relational Systems: The Life of a Query

这篇关于Architecture of a Database System的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1045413

相关文章

MySQL中On duplicate key update的实现示例

《MySQL中Onduplicatekeyupdate的实现示例》ONDUPLICATEKEYUPDATE是一种MySQL的语法,它在插入新数据时,如果遇到唯一键冲突,则会执行更新操作,而不是抛... 目录1/ ON DUPLICATE KEY UPDATE的简介2/ ON DUPLICATE KEY UP

MySQL分库分表的实践示例

《MySQL分库分表的实践示例》MySQL分库分表适用于数据量大或并发压力高的场景,核心技术包括水平/垂直分片和分库,需应对分布式事务、跨库查询等挑战,通过中间件和解决方案实现,最佳实践为合理策略、备... 目录一、分库分表的触发条件1.1 数据量阈值1.2 并发压力二、分库分表的核心技术模块2.1 水平分

Python与MySQL实现数据库实时同步的详细步骤

《Python与MySQL实现数据库实时同步的详细步骤》在日常开发中,数据同步是一项常见的需求,本篇文章将使用Python和MySQL来实现数据库实时同步,我们将围绕数据变更捕获、数据处理和数据写入这... 目录前言摘要概述:数据同步方案1. 基本思路2. mysql Binlog 简介实现步骤与代码示例1

使用shardingsphere实现mysql数据库分片方式

《使用shardingsphere实现mysql数据库分片方式》本文介绍如何使用ShardingSphere-JDBC在SpringBoot中实现MySQL水平分库,涵盖分片策略、路由算法及零侵入配置... 目录一、ShardingSphere 简介1.1 对比1.2 核心概念1.3 Sharding-Sp

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

Mac电脑如何通过 IntelliJ IDEA 远程连接 MySQL

《Mac电脑如何通过IntelliJIDEA远程连接MySQL》本文详解Mac通过IntelliJIDEA远程连接MySQL的步骤,本文通过图文并茂的形式给大家介绍的非常详细,感兴趣的朋友跟... 目录MAC电脑通过 IntelliJ IDEA 远程连接 mysql 的详细教程一、前缀条件确认二、打开 ID

MySQL的配置文件详解及实例代码

《MySQL的配置文件详解及实例代码》MySQL的配置文件是服务器运行的重要组成部分,用于设置服务器操作的各种参数,下面:本文主要介绍MySQL配置文件的相关资料,文中通过代码介绍的非常详细,需要... 目录前言一、配置文件结构1.[mysqld]2.[client]3.[mysql]4.[mysqldum

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

Go语言连接MySQL数据库执行基本的增删改查

《Go语言连接MySQL数据库执行基本的增删改查》在后端开发中,MySQL是最常用的关系型数据库之一,本文主要为大家详细介绍了如何使用Go连接MySQL数据库并执行基本的增删改查吧... 目录Go语言连接mysql数据库准备工作安装 MySQL 驱动代码实现运行结果注意事项Go语言执行基本的增删改查准备工作

MySQL按时间维度对亿级数据表进行平滑分表

《MySQL按时间维度对亿级数据表进行平滑分表》本文将以一个真实的4亿数据表分表案例为基础,详细介绍如何在不影响线上业务的情况下,完成按时间维度分表的完整过程,感兴趣的小伙伴可以了解一下... 目录引言一、为什么我们需要分表1.1 单表数据量过大的问题1.2 分表方案选型二、分表前的准备工作2.1 数据评估