自旋锁代替互斥锁的实践

2024-06-09 06:32
文章标签 互斥 实践 自旋 代替

本文主要是介绍自旋锁代替互斥锁的实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转自:http://ifeve.com/practice-of-using-spinlock-instead-of-mutex/

自旋锁和互斥锁是多线程程序中的重要概念。 它们被用来锁住一些共享资源, 以防止并发访问这些共享数据时可能导致的数据不一致问题。 但是它们的不同之处在哪里? 我们应该在什么时候用自旋锁代替互斥锁?

理论分析

从理论上说, 如果一个线程尝试加锁一个互斥锁的时候没有成功, 因为互斥锁已经被锁住了, 这个未获取锁的线程会休眠以使得其它线程可以马上运行。 这个线程会一直休眠, 直到持有锁的线程释放了互斥锁, 休眠的线程才会被唤醒。 如果一个线程尝试获得一个自旋锁的时候没有成功, 该线程会一直尝试加锁直到成功获取锁。 因此它不允许其它线程运行(当然, 操作系统会在该线程所在的时间片用完时, 强制切换到其它线程)。

存在的问题

互斥锁存在的问题是, 线程的休眠和唤醒都是相当昂贵的操作, 它们需要大量的CPU指令, 因此需要花费一些时间。 如果互斥量仅仅被锁住很短的一段时间, 用来使线程休眠和唤醒线程的时间会比该线程睡眠的时间还长, 甚至有可能比不断在自旋锁上轮训的时间还长。自旋锁的问题是, 如果自旋锁被持有的时间过长, 其它尝试获取自旋锁的线程会一直轮训自旋锁的状态, 这将非常浪费CPU的执行时间, 这时候该线程睡眠会是一个更好的选择。

解决方案

在单核/单CPU系统上使用自旋锁是没用的, 因为当线程尝试获取自旋锁不成功的时候会一直尝试, 这会一直占用CPU, 其它线程不可能运行, 因为其他线程不能运行, 这个锁也就不会被解锁。 换句话说, 在单核/单CPU的系统上,自旋锁除了浪费时间没有一点好处。 这时如果这个线程(记为A)可以休眠, 其它线程可以立即运行, 因为其它有可能解锁, 那么线程A可能在唤醒后继续执行。

在多核/多CPU的系统上, 特别是大量的线程只会短时间的持有锁的时候, 在使线程睡眠和唤醒线程上浪费大量的时间, 也许会显著降低程序的运行性能。 使用自旋锁, 线程可以充分利用调度程序分配的时间片(经常阻塞很短的时间, 不用休眠, 然后马上继续它们的工作了), 以达到更高的处理能力和吞吐量。

实践

因为程序员往往并不能事先知道哪种方案会更好(比如, 不知道运行环境的CPU核的数量), 操作系统也不知道一段指令是不是针对单核或者多核环境下做过优化, 所以大部分操作系统并不严格区分互斥锁和自旋锁。 实际上, 绝大部分现代的操作系统采用的是混合型互斥锁(hybrid mutexes)和混合型自旋锁(hybrid spinlocks)。 它们是什么意思呢?

混合型互斥锁, 在多核系统上起初表现的像自旋锁一样, 如果一个线程不能获取互斥锁, 它不会马上被切换为休眠状态, 因为互斥量可能很快就被解锁, 所以这种机制会表现的像自旋锁一样。 只有在一段时间以后(或者尝试一定次数,或者其他指标)还不能获取锁, 它就会被切换为休眠状态。 如果运行在单核/单CPU上, 这种机制将不会自旋(就像上面解释的, 这种情况自旋没有什么好处)。

混合型自旋锁, 起初表现的和正常自旋锁一样, 但是为了避免浪费大量的CPU时间, 会有一个折中的策略。 这种机制不会把线程切换到休眠态(既然想要使用自旋锁, 那么你并不希望这种情况发生), 也许会决定放弃这个线程的执行(马上放弃或者等一段时间)并允许其他线程运行, 这样提高了自旋锁被解锁的可能性(大多数情况, 线程之间的切换操作比使线程休眠而后唤醒它要昂贵, 尽管那不是很明显)。

总结

如果对选择哪种方案感到疑惑, 那就使用互斥锁吧, 并且大多数现代的操作系统都允许在获取锁的时候自旋一段时间(混合型互斥锁)。 只有在一定条件下使用自旋锁才可以提高性能, 事实上, 你现在在做的项目可能没有一个能在通过自旋锁提高性能。 也许你考虑使用你自己定义的”锁对象”, 它可以在内部使用互斥锁或者自旋锁(例如: 在创建锁对象时, 用哪种机制是可配置的), 刚开始在所有的地方都是用互斥锁, 如果你认为在有些地方用自旋锁确实可以提高性能, 你可以试试, 并且比较两种情况的结果(使用一些性能评测工具), 但一定要在单核和多核环境上测试之后再下结论(如果你的代码是夸平台的, 也要尽可能在不同的平台上测试下)。

这篇关于自旋锁代替互斥锁的实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1044428

相关文章

JDK21对虚拟线程的几种用法实践指南

《JDK21对虚拟线程的几种用法实践指南》虚拟线程是Java中的一种轻量级线程,由JVM管理,特别适合于I/O密集型任务,:本文主要介绍JDK21对虚拟线程的几种用法,文中通过代码介绍的非常详细,... 目录一、参考官方文档二、什么是虚拟线程三、几种用法1、Thread.ofVirtual().start(

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

springboot依靠security实现digest认证的实践

《springboot依靠security实现digest认证的实践》HTTP摘要认证通过加密参数(如nonce、response)验证身份,避免明文传输,但存在密码存储风险,相比基本认证更安全,却因... 目录概述参数Demopom.XML依赖Digest1Application.JavaMyPasswo

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

Java 结构化并发Structured Concurrency实践举例

《Java结构化并发StructuredConcurrency实践举例》Java21结构化并发通过作用域和任务句柄统一管理并发生命周期,解决线程泄漏与任务追踪问题,提升代码安全性和可观测性,其核心... 目录一、结构化并发的核心概念与设计目标二、结构化并发的核心组件(一)作用域(Scopes)(二)任务句柄

Java中的Schema校验技术与实践示例详解

《Java中的Schema校验技术与实践示例详解》本主题详细介绍了在Java环境下进行XMLSchema和JSONSchema校验的方法,包括使用JAXP、JAXB以及专门的JSON校验库等技术,本文... 目录1. XML和jsON的Schema校验概念1.1 XML和JSON校验的必要性1.2 Sche

SpringBoot集成WebService(wsdl)实践

《SpringBoot集成WebService(wsdl)实践》文章介绍了SpringBoot项目中通过缓存IWebService接口实现类的泛型入参类型,减少反射调用提升性能的实现方案,包含依赖配置... 目录pom.XML创建入口ApplicationContextUtils.JavaJacksonUt

MyCat分库分表的项目实践

《MyCat分库分表的项目实践》分库分表解决大数据量和高并发性能瓶颈,MyCat作为中间件支持分片、读写分离与事务处理,本文就来介绍一下MyCat分库分表的实践,感兴趣的可以了解一下... 目录一、为什么要分库分表?二、分库分表的常见方案三、MyCat简介四、MyCat分库分表深度解析1. 架构原理2. 分

Java 中的 equals 和 hashCode 方法关系与正确重写实践案例

《Java中的equals和hashCode方法关系与正确重写实践案例》在Java中,equals和hashCode方法是Object类的核心方法,广泛用于对象比较和哈希集合(如HashMa... 目录一、背景与需求分析1.1 equals 和 hashCode 的背景1.2 需求分析1.3 技术挑战1.4

k8s搭建nfs共享存储实践

《k8s搭建nfs共享存储实践》本文介绍NFS服务端搭建与客户端配置,涵盖安装工具、目录设置及服务启动,随后讲解K8S中NFS动态存储部署,包括创建命名空间、ServiceAccount、RBAC权限... 目录1. NFS搭建1.1 部署NFS服务端1.1.1 下载nfs-utils和rpcbind1.1