EKF在LiFePO4电池SOC估算中不好用?一问带你破解EKF应用难题

2024-06-09 00:28

本文主要是介绍EKF在LiFePO4电池SOC估算中不好用?一问带你破解EKF应用难题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

磷酸铁锂电池因为平台区的存在,导致使用戴维南模型+EKF的方法时,无法准确进行SOC准确预估。所以最近搜索了大量关于磷酸铁锂电池SOC预估的论文、期刊,但我被海量忽略客观事实、仅为了毕业的硕士论文给震惊到了。很多论文为了掩饰平台区的存在,人为伪造平台区的压差数据进行建模,有些SOC上下跳变3-8%以上(想像你开电动车时,发现剩余电量在5%上下跳变,就问你怕不怕 ) ,有些预估的OCV差异20mV以上也敢自称精度良好,而且大部分论文都不敢展示初始SOC有差异时的收敛效果。

好在最终发现一个比较靠谱的论文,总结一下供大家参考。

原文链接:

https://www.sciencedirect.com/science/article/abs/pii/S0306261923009455

原文标题:

State-of-charge estimation for onboard LiFePO4 batteries with adaptive state update in specific open-circuit-voltage ranges

注:本文除了插图为手动加入外,90%内容由国产gpt-kimi生成,只作为一般性介绍,不用作任何商业用途。转载时请也遵循此原则。

图片

       在电动汽车(EV)的快速发展中,电池管理系统(BMS)的核心功能之一是准确估算电池的剩余电量,即电池的荷电状态(State of Charge, SOC)。SOC的准确估算对于提高电池使用效率、延长电池寿命、保障行车安全至关重要。然而,现有的SOC估算方法在面对具有平坦电压-SOC关系的锂铁磷(LiFePO4)电池时,常常无法提供准确的估算结果。本文将深入解析一种新型的SOC估算方法,该方法专为解决LiFePO4电池的SOC估算难题而设计,并补充不同P, Q, R值下的测试结果。

1. 引言

LiFePO4电池因其高安全性、长寿命和低成本等优点,在电动汽车领域得到了广泛应用。但是,由于其电压-SOC曲线相对平坦,传统的基于模型的SOC估算方法难以准确反映电池的荷电状态。为了克服这一难题,研究者们提出了一种结合自适应递推平方根算法(Adaptive Recursive Square Root, ARSR)和扩展卡尔曼滤波器(Extended Kalman Filter, EKF)的新型SOC估算方法。

2. 新型SOC估算方法概述

该方法的核心在于两个主要的创新点:

  1. 自适应状态更新:根据不同的开路电压(Open Circuit Voltage, OCV)范围,采用不同的状态更新策略,以适应LiFePO4电池在不同SOC区间的特性变化。

  2. 参数在线识别:使用ARSR算法在线识别OCV和其他电池模型参数,然后根据识别结果自适应地更新EKF算法的参数。

3. 电池模型与参数识别

3.1 电池模型选择

本文选用了广泛认可的Thevenin等效电路模型来描述电池的电压特性。该模型包括一个电压源UOCV、一个欧姆内阻R、一个极化电阻Rp和一个极化电容Cp。

3.2 参数在线识别

由于电池管理系统(BMS)的计算精度限制,传统的递推最小二乘法(Recursive Least Squares, RLS)在参数识别时容易出现问题。为此,本文采用了ARSR算法,该算法通过分解协方差矩阵P来避免非正半定矩阵的问题,提高了参数识别的稳定性。

图片

4. SOC更新策略

4.1 EKF算法在SOC更新中的应用

EKF算法利用模型预测电压和实测电压之间的差异来更新SOC。该过程包括先验估计和后验估计两个部分,其中涉及到状态矩阵和协方差矩阵的更新。

4.2 自适应算法参数更新

自适应算法参数更新是本方法的核心创新之一。在不同的OCV范围内,电池的电压响应特性存在显著差异,因此需要对EKF算法的参数进行自适应调整以优化SOC更新过程。

4.2.1 OCV范围的划分与识别

首先,根据OCV曲线的斜率,将整个OCV范围划分为不同的区域,包括陡峭斜率区、平台区和缓斜率区。通过在线识别当前的OCV值,可以确定当前所处的OCV范围。

图片

4.2.2 EKF参数的自适应调整

在陡峭斜率区和平台区,由于OCV对SOC变化的响应较小,若继续进行SOC更新可能导致算法发散。因此,在此两个区域内,通过设置EKF参数Q和R的值,使得Kalman增益G趋于零,从而禁止后验估计中的SOC更新。

相反,在缓斜率区,电池的电压响应特性与SOC变化的关联性更强,适合进行SOC更新。此时,通过增大Q值并减小R值,可以提高Kalman增益G,从而加快SOC的更新速度。

图片

4.3 不同P, Q, R值下的测试结果

在实验验证中,研究者们测试了不同的P, Q, R参数设置对SOC估算准确性和稳定性的影响。实验结果表明,适当的P值有助于算法在初始阶段快速收敛,而合理的Q和R值对于维持算法在不同OCV范围内的稳定性至关重要。实验数据显示,当P设置过大时,如diag(1e2, 1e5),在OCV平台区可能会导致算法发散,而较小的P值,如diag(1e-4, 1e-4),有助于保持算法的稳定性。此外,通过调整Q和R的值,可以在不同的OCV范围内实现对SOC更新的精细控制,从而优化整个SOC估算过程。

图片

5. SOC平滑处理

为了进一步提高SOC估算的稳定性,本方法引入了Ah滤波器对EKF输出的SOC进行平滑处理。

5.1 Ah滤波器的原理

Ah滤波器基于库仑计量法,通过电池的充放电电流和时间来计算累积的电荷量,从而得到一个平滑的SOC估计值。其核心思想是利用电池的安时容量特性,通过电流积分来抵消EKF算法可能产生的SOC估计波动。

5.2 Ah滤波器的实现

具体实现中,Ah滤波器的输出SOC_Ah与EKF算法的输出SOC_EKF相结合,通过一个平滑系数k_out进行加权平均,得到最终的SOC估计结果SOC+_Ah。平滑系数k_out是一个小的正数,用于控制滤波器的响应速度。

图片

6. 实验验证

研究者们在不同温度下,通过不同的驾驶模式对所提出的SOC估算方法进行了大规模实验验证。实验结果表明,与传统方法相比,新方法在确保高精度的同时,展现出了良好的稳定性,最大绝对误差控制在2%以内。

图片

7. 方法的实用性验证

通过分析从2,909辆电动汽车收集的实车运行数据,验证了所提方法的实用性。统计分析表明,所提方法的收敛SOC范围在实际应用中具有较高的覆盖率,能够满足实际应用需求。

8. 讨论与展望

尽管本文提出的算法在新电池上进行了验证,但电池老化后OCV范围的电压会发生变化,因此需要根据电池健康状态(SOH)更新OCV曲线。未来的研究将考虑联合估计SOH和SOC,以确保算法在整个电池生命周期内的准确性和可靠性。

9. 结论

本文提出的基于Thevenin模型的SOC估算方法,通过ARSR算法在线识别电池模型参数,结合EKF算法实时估算电池SOC,并在线识别特定OCV范围以自适应更新EKF参数,有效避免了算法在OCV平坦区域的发散问题。通过不同温度和驾驶模式的实验验证,以及实车数据的应用分析,证明了该方法的高精度和高稳定性,为电动汽车中LiFePO4电池的可靠管理奠定了基础。

10. 附录:数学表达式

以下是文章中提到的一些关键数学表达式,供有兴趣深入了解的读者参考:

图片

这篇关于EKF在LiFePO4电池SOC估算中不好用?一问带你破解EKF应用难题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1043744

相关文章

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

C#中的Converter的具体应用

《C#中的Converter的具体应用》C#中的Converter提供了一种灵活的类型转换机制,本文详细介绍了Converter的基本概念、使用场景,具有一定的参考价值,感兴趣的可以了解一下... 目录Converter的基本概念1. Converter委托2. 使用场景布尔型转换示例示例1:简单的字符串到

Spring Boot Actuator应用监控与管理的详细步骤

《SpringBootActuator应用监控与管理的详细步骤》SpringBootActuator是SpringBoot的监控工具,提供健康检查、性能指标、日志管理等核心功能,支持自定义和扩展端... 目录一、 Spring Boot Actuator 概述二、 集成 Spring Boot Actuat

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

Spring Boot3.0新特性全面解析与应用实战

《SpringBoot3.0新特性全面解析与应用实战》SpringBoot3.0作为Spring生态系统的一个重要里程碑,带来了众多令人兴奋的新特性和改进,本文将深入解析SpringBoot3.0的... 目录核心变化概览Java版本要求提升迁移至Jakarta EE重要新特性详解1. Native Ima

Redis中Stream详解及应用小结

《Redis中Stream详解及应用小结》RedisStreams是Redis5.0引入的新功能,提供了一种类似于传统消息队列的机制,但具有更高的灵活性和可扩展性,本文给大家介绍Redis中Strea... 目录1. Redis Stream 概述2. Redis Stream 的基本操作2.1. XADD