Plotly : 超好用的Python可视化工具

2024-06-08 20:52

本文主要是介绍Plotly : 超好用的Python可视化工具,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 安装:开始你的 Plotly 之旅
    • 基本折线图:简单却强大的起点
    • 带颜色的散点图:数据的多彩世界
    • 三维曲面图:探索数据的深度
    • 气泡图:让世界看到你的数据
    • 小提琴图:数据分布的优雅展现
    • 旭日图:分层数据的直观展示
    • 热力图:变量之间关系的直观展示
    • 雷达图:多维数据的全面展示
    • 三维散点图:空间中的点云
    • 漏斗图 :业务流程的直观分析
    • 总结

在这个数据驱动的时代,数据可视化不仅仅是一种展示数据的方式,更是一种艺术。它让我们能够直观地理解数据,发现数据背后的故事。而 Plotly,这个强大的 Python 库,正是我们探索数据之美的得力助手。

安装:开始你的 Plotly 之旅

在开始我们的探索之前,确保你的 Python 环境中已经安装了 Plotly。如果你还没有安装,只需在命令行中输入以下命令:

pip install plotly

安装完成后,我们就可以在 Python 的海洋中,乘风破浪,绘制出属于我们自己的数据世界。

基本折线图:简单却强大的起点

让我们从最基本的折线图开始,这是数据可视化的经典之作。以下是一个简单的折线图示例代码:

import plotly.graph_objects as go
import numpy as np# 生成样本数据
x = np.linspace(0, 10, 100)
y = np.sin(x)# 创建基本折线图
fig = go.Figure(data=go.Scatter(x=x, y=y, mode='lines'))# 添加标题和标签
fig.update_layout(title='plotly 折线图', xaxis_title='X-axis', yaxis_title='Y-axis')# 展示图表
fig.show()

运行这段代码后,你将看到一个随 x 轴变化而波动的正弦波形图。这是一个非常基础的示例,但它展示了 Plotly 创建图表的能力。

![[Pasted image 20240605104800.png]]

带颜色的散点图:数据的多彩世界

接下来,我们来探索一下散点图。散点图是一种展示两个变量之间关系的图表。通过颜色的渐变,我们可以展示第三个维度的信息,让图表更加丰富和直观。

import plotly.express as px
import pandas as pd
import numpy as np# 生成样本数据
np.random.seed(42)
df = pd.DataFrame({'X': np.random.rand(50), 'Y': np.random.rand(50), 'Size': np.random.rand(50) * 30})# 创建带有颜色梯度的散点图
fig = px.scatter(df, x='X', y='Y', size='Size', color='Size', title='plotly Scatter Plot with Color Gradient')# 展示图表
fig.show()

这段代码将生成一个带有颜色梯度的散点图,每个点的大小和颜色代表了不同的数据维度。

在这里插入图片描述

三维曲面图:探索数据的深度

三维曲面图是一种展示三个变量之间关系的高级图表。它通过曲面的形状和颜色,展示了数据在三维空间中的分布和变化。

import plotly.graph_objects as go
import numpy as np# 生成样本数据
x = np.linspace(-5, 5, 100)
y = np.linspace(-5, 5, 100)
x, y = np.meshgrid(x, y)
z = np.sin(np.sqrt(x ** 2 + y ** 2))# 创建三维曲面图
fig = go.Figure(data=[go.Surface(z=z, x=x, y=y)])# 添加标题和标签
fig.update_layout(title='plotly 3D Surface Plot', scene=dict(xaxis_title='X-axis', yaxis_title='Y-axis', zaxis_title='Z-axis'))# 展示图表
fig.show()

运行这段代码,你将看到一个动态的三维曲面图,它以一种全新的视角展示了数据的深度。

在这里插入图片描述

气泡图:让世界看到你的数据

气泡图是散点图的一种变体,它通过气泡的大小来展示第三个维度的信息。这种图表非常适合展示地理数据,比如国家的人口分布。

import plotly.express as px# 使用Gapminder数据集生成样本数据
df = px.data.gapminder().query("year == 2024")# 创建气泡地图
fig = px.scatter_geo(df, locations='iso_alpha', size='pop', hover_name='country', title='plotly Bubble Map')# 展示图表
fig.show()

这段代码将生成一个气泡地图,每个国家的气泡大小代表了其人口数量。

在这里插入图片描述

小提琴图:数据分布的优雅展现

小提琴图是一种结合了箱形图和核密度图的图表,它能够展示数据的分布情况,同时提供箱形图中的统计信息。

import plotly.express as px
import seaborn as sns# 加载样本数据集,注意数据集获取可能需要梯子
tips = sns.load_dataset('tips')# 创建小提琴图
fig = px.violin(tips, y='total_bill', x='day', box=True, points="all", title='小提琴图')# 展示图表
fig.show()

这段代码将展示每天账单总额的分布情况,小提琴图以其优雅的形态,让数据的分布一目了然。

在这里插入图片描述

旭日图:分层数据的直观展示

旭日图是一种展示分层数据的图表,它通过圆圈上的环来表示数据的层次结构。这种图表非常适合展示复杂的分类数据。

import plotly.express as px# 使用内置数据集生成样本数据
df = px.data.tips()# 创建旭日图
fig = px.sunburst(df, path=['sex', 'day', 'time'], values='total_bill', title='旭日图')# 展示图表
fig.show()

这段代码将展示一个旭日图,通过不同颜色的环,直观地展示了数据的分层结构。

在这里插入图片描述

热力图:变量之间关系的直观展示

热力图是一种展示变量之间相关性的图表,它通过颜色的深浅来表示相关系数的大小。

import plotly.express as px
import numpy as np# 生成样本数据
np.random.seed(42)
corr_matrix = np.random.rand(10, 10)# 创建带有注释的热力图
fig = px.imshow(corr_matrix, labels=dict(x="X-axis", y="Y-axis", color="Correlation"), title='Heatmap with Annotations')# 展示图表
fig.show()

这段代码将生成一个热力图,通过颜色的变化,直观地展示了变量之间的相关性。

在这里插入图片描述

雷达图:多维数据的全面展示

雷达图是一种展示多维数据的图表,它通过多个维度的数据量映射到坐标轴上,形成一个完整的雷达图。

import plotly.graph_objects as go  # 生成样本数据  
categories = ['Speed', 'Reliability', 'Comfort', 'Safety', 'Efficiency']  
values = [90, 60, 85, 70, 80]  # 创建雷达图  
fig = go.Figure()  
fig.add_trace(go.Scatterpolar(r=values, theta=categories, fill='toself', name='Product A'))  # 添加标题  
fig.update_layout(title='雷达图')  # 展示图表  
fig.show()

这段代码将展示一个雷达图,通过雷达图的形状,全面地展示了产品在不同维度上的表现。

在这里插入图片描述

三维散点图:空间中的点云

三维散点图是一种在三维空间中展示数据点的图表,它通过颜色和大小来展示数据的多个维度。

import plotly.graph_objects as go
import numpy as np# 生成样本数据
np.random.seed(42)
x = np.random.rand(100)
y = np.random.rand(100)
z = np.random.rand(100)# 创建三维散点图
fig = go.Figure(data=[go.Scatter3d(x=x, y=y, z=z, mode='markers', marker=dict(size=8, color=z, colorscale='Viridis'))])# 添加标题和标签
fig.update_layout(title='3D Scatter Plot', scene=dict(xaxis_title='X-axis', yaxis_title='Y-axis', zaxis_title='Z-axis'))# 展示图表
fig.show()

这段代码将生成一个三维散点图,通过点的颜色和大小,展示了数据在三维空间中的分布。

在这里插入图片描述

漏斗图 :业务流程的直观分析

漏斗图(Funnel Chart)是一种可视化工具,通常用于展示业务流程或转化过程中的各个阶段,以及在每个阶段中用户或业务量的变化。这种图表特别适用于分析转化率,即在一系列步骤中,参与者或项目从一个阶段到下一个阶段的减少率。

import plotly.graph_objects as go  # 导入Plotly的graph_objects模块# 生成样本数据
values = [500, 450, 350, 300, 200]  # 假设的各阶段业务量# 创建一个漏斗图
fig = go.Figure(go.Funnel(  # 使用Funnel对象来创建漏斗图y=['Stage 1', 'Stage 2', 'Stage 3', 'Stage 4', 'Stage 5'],  # 漏斗图各阶段的名称x=values,  # 各阶段的业务量数据textinfo='value+percent initial'  # 漏斗图中显示的信息,这里显示初始值和百分比)
)# 添加标题
fig.update_layout(title='漏斗图')  # 更新图表布局,设置标题为“漏斗图”# 展示图表
fig.show()  # 显示图表

这段代码将生成一个漏斗图,表示一个具有不同阶段的连续过程。每个部分的大小代表相应的值。

在这里插入图片描述

总结

Plotly 是一个通用且功能强大的 Python 数据可视化库。本文介绍了一系列高级示例,展示了各种绘图类型和交互功能。请尝试使用所提供的代码示例,深入了解 Plotly 的功能,提高大家数据可视化的技能。

原文地址:https://mp.weixin.qq.com/s/rA7T5CgFWzswx8RXcXuuPg
往期文章合集:https://stormsha.blog.csdn.net/article/details/139203741

这篇关于Plotly : 超好用的Python可视化工具的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1043285

相关文章

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

Python极速搭建局域网文件共享服务器完整指南

《Python极速搭建局域网文件共享服务器完整指南》在办公室或家庭局域网中快速共享文件时,许多人会选择第三方工具或云存储服务,但这些方案往往存在隐私泄露风险或需要复杂配置,下面我们就来看看如何使用Py... 目录一、android基础版:HTTP文件共享的魔法命令1. 一行代码启动HTTP服务器2. 关键参