Effective C++ 7.0 模板与泛型编程

2024-06-08 13:18

本文主要是介绍Effective C++ 7.0 模板与泛型编程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

条款41   了解隐式接口和编译器多态

1. classes 和 templates 都支持 接口 和多态

2. 对 classes 而言接口是 显式 的,以函数签名为中心, 多态则是通过 virtual 函数发生于运行期间。

3. 对 template 参数而言, 接口是隐式的, 奠基于有效的表达式。

   多态则是通过  template具现化 和  函数重载解析 发生于 编译期。
   
   
 条款42   了解typename的双重意义
 1. 声明 template 参数时, 前缀关键字 class 和 typename 可互换。
 
 2. 请使用关键字typename标识嵌套从属类型名称; 但不得在 base class list(基类列) 或 member initialization list(成员初值列)内以它作为base class 修饰类。
 
  template<typename C>
 
  void f(const C& container,         // 不允许使用 typename
         typename C::iterator iter   // 一定要使用 typename 说明C::iterator 是一种数据类型
        );
 

   
   template<typename T>
   class Derived: public Base<T>::Nested      // base class list 中 不允许 typename
   {
   public:
       explicit Derived(int x):Base<T>::Nested(x)  // member initialization list 中 不允许 typename
       {
           // 嵌套从属类型名称  既不在base class list 也不在 mem init list 中
           // 作为一个base class 修饰符 需要加上 typename
           typename  Base<T>::Nested temp;
       }
   
   };
   
   
 条款43: 学习处理模板化基类内的名称
 
 1. 可在 derived class templates 内通过 "this->" 指涉 base class templates 内的成员名称, 或借由一个明白写出
    的"base class 资格修饰符"完成。
 
    采用template的一个算法:
    
    class CompanyA
    {
    public:
    ... ...
    void sendCleartext(const std::string& msg);
    void sendEncrypted(const std::string& msg);
    ... ...
    };
    
    class CompanyB
    {
    public:
    ... ...
    void sendCleartext(const std::string& msg);
    void sendEncrypted(const std::string& msg);
    ... ...
    };
    
    ... ...
    
    class MsgInfo { ... };
    
    template<typename Company>
    class MsgSender
    {
    public:
       ...
       void sendClear(const MsgInfo& info)
       {
         std::string msg;
         Company c;
         c.sendCleartext(msg);
       }
       
       // 类似sendClear, 唯一不同的是 这里调用了 c.sendEncrypted
       void sendSecret(const MsgInfo& info)
       { ... }
    };
    
    
    // 日志记录某些信息
    template<typename Company>
    class LoggingMsgSender:public MsgSender<Company>
    {
    public:
    ... ...
    void sendClearMsg(const MsgInfo& info)
    {
      sendClear(info);   // 调用base class函数,这段代码无法通过编译。
    }
    ... ...
    };
    
    验证:
    当
    class CompanyZ
    {
    public:
    ... ...
    // 这个class 不提供 sendCleartext函数 void sendCleartext(const std::string& msg);
    void sendEncrypted(const std::string& msg);
    ... ...
    };
    
    template<>  // 全特化
    class MsgSender<CompanyZ>
    {
    public:
       ...
       // 类似sendClear, 唯一不同的是 这里调用了 c.sendEncrypted
       void sendSecret(const MsgInfo& info)
       { ... }
    };
    
    此时若在
        // 日志记录某些信息
    template<typename Company>
    class LoggingMsgSender:public MsgSender<Company>
    {
    public:
    ... ...
    void sendClearMsg(const MsgInfo& info)
    {
      sendClear(info);   // 如果Company == CompanyZ 这个函数不存在
                         // 所以上面代码编译不通过是有道理的。
    }
    ... ...
    };
    
    
    为了不让其编译失效,有三种办法:
    (1) 加上 this->
    template<typename Company>
    class LoggingMsgSender:public MsgSender<Company>
    {
    public:
        ... ...
        void sendClearMsg(const MsgInfo& info)
        {
           this->sendClear(info);   // 成立,假设sendClear将被继承
        }
        ... ...
    };
    
    (2)使用using声明式
    template<typename Company>
    class LoggingMsgSender:public MsgSender<Company>
    {
    public:
        using MsgSender<Company>::sendClear;  // 告诉编译器,请他假设sendClear位于base class 内。
        ... ...
        void sendClearMsg(const MsgInfo& info)
        {
           sendClear(info);   // 成立,假设sendClear将被继承
        }
        ... ...
    };
    
    (3)明白指出被调用位于base class 内:
    template<typename Company>
    class LoggingMsgSender:public MsgSender<Company>
    {
    public:
        ... ...
        void sendClearMsg(const MsgInfo& info)
        {
           MsgSender<Company>::sendClear(info);   // 成立,假设sendClear将被继承
        }
        ... ...

    };


条款44:将与参数无关的代码抽离 templates
 
 1. Templates生成多个classes和多个函数,所以任何template代码都不该与某个造成膨胀的template参数产生相依联系

    因非类型模板参数而造成的代码膨胀,往往可以消除,做法是以函数参数或class成员变量替换template参数。
    
    举例:
    template<typename T,std::size_t n>
    class SquareMatrix
    {
    public:
       ... ...
       void invert();   // 求逆矩阵
    };
    
    现在考虑这些代码:
    SquareMatrix<double,5> sm1;
    sm1.invert();  // 调用 SquareMatrix<double,5>::invert();
    SquareMatrix<double,10> sm2;
    sm2.invert();  // 调用 SquareMatrix<double,10>::invert();
    这里具现了两份,引起了代码膨胀。
    
    避免代码膨胀
    方法1:
    template<typename T>   // 与尺寸无关的 base class
    class SquareMatrixBase
    {
    protected:
        ... ...
        void invert(std::size_t matrixSize);
        ... ...
    };
    
    template<typename T,std::size_t n>
    class SquareMatrix: private SquareMatrixBase<T>
    {
    private:
      using SquareMatrixBase<T>::invert;
    
    public:
    ... ...
       void invert()  { this->invert(n); }  // 制造一个inline调用   调用base class版的invert.
    }
    
    SquareMatrix<double,5> sm1;
    sm1.invert();  
    SquareMatrix<double,10> sm2;
    sm2.invert();  
    // 由于共享同一份  SquareMatrixBase<double> 则只具现一份代码

    方法2:
    存储一份指针:
    template<typename T>
    class SquareMatrixBase
    {
    protected:
      SquareMatrixBase(std::size_t n, T* pMem): size(n), pData(pMem) { }
      void setDataPtr(T* ptr)  { pData = ptr; }
      ... ...
    private:
       std::size_t size;   // 矩阵的大小
       T* pData;           // 指针, 指向矩阵的内容
    };
    
    // 这允许 derived class 决定内存分配方式。
    某些将矩阵存储在内部
    template<typename T,std::size_t n>
    class SquareMatrix: private SquareMatrixBase<T>
    {
    public:
       SquareMatrix():SquareMatrixBase<T>(n,data) {}
       ...
    
    private:
       T data[n*n];
    };
    
    // 将每一个矩阵的数据放进heap
    template<typename T,std::size_t n>
    class SquareMatrix: private SquareMatrixBase<T>
    {
    public:
       SquareMatrix():SquareMatrixBase<T>(n,0), pData(new T[n*n])
       {
         this->setDataPtr(pData.get());
       }
       ...
    
    private:
       boost::scoped_array<T> pData;
    };

 条款45: 运用成员函数模板接受所有兼容类型
 
 原始指针类型之间的转换是隐式转换,因此并未声明为explicit。
 
 template<typename T>
 class SmartPtr
 {
 public:
   template<typename U>//member template,生成copy构造函数
   SmartPtr( const  SmartPtr<U>&  other): heldPtr(other.get()) { } //暗示只有U*可转为T*才可通过编译
   T*  get( )const { return heldPtr; }
   
private:
   T*  heldPtr;
};

在class内声明泛化copy构造函数并不会阻止编译器生成它们自己的copy构造函数(non-template),
所以如果想要控制copy构造函数的方方面面必须同时声明泛化copy构造函数和正常的copy构造函数。
同理,适用于赋值操作。

template<class  T>
class  shared_ptr
{
public:
    shared_ptr ( shared_ptr const&  r);
    
    template<class  Y>
    shared_ptr( shared_ptr<Y>  const&  r);    

    shared_ptr&  operator = (shared_ptr const&  r);    

    template<class  Y>         
    shared_ptr&  operator = (shared_ptr<Y> const&  r);
};

 1. 请使用 member function templates(成员函数模板) 生成 "可接受所有的兼容类型"的函数
 2. 如果你声明 member templates 用于 "泛华copy构造函数" 或 "泛化assignment操作",
    你还是需要声明正常的 copy构造函数 和 copy assignment 操作符。
 
 
 条款46: 需要类型转换时请为模板定义  非成员函数
 
 template<typename T>

 class Rational
 {
   public:
    Rational(const T& numerator = 0, const T& denominator = 1):n(numerator),d(denominator){}
    const T numerator()   const{return n;}
    const T denominaotr() const{return d;}
    
   private:
     T n, d;
};

template<typename T>
const Rational<T> operator*(const Rational<T>& lhs, const Rational<T>& rhs)
{
   return Rational<T>(lhs.numerator()*rhs.numerator(), lhs.denominaotr()*rhs.denominaotr());
}

Rational<int> oneHalf(1,2);
Rational<int> result = oneHalf * 2; //编译error

operator*第一参数被声明为Rational<T>,而传给operator*的第一实参的类型是Rational<int>,所以T是int。第二参数是Rational<T>,但传入的实参是整数2。
template实参推导过程中并不考虑通过构造函数而发生的隐式类型转换。因此,不会转换为Rational<int>。


解决方法:
template class内的friend声明式可以指涉某个特定函数。因此可以声明operator*是Rational<T>的一个friend函数。
编译器总是能够在class Rational<T> 具现化时得知T。

template<typename T>
class Rational
{    …

     friend const Rational<T> operator*(const Rational& lhs, const Rational& rhs);   // 模板函数必须放在 .h 文件中 只能声明 即只能放在类里面。

};


template<typename T>
const Rational<T> operator*(const Rational<T>& lhs, const Rational<T>& rhs){ … }
可以通过编译,但不能链接。


编译器知道我们要调用哪个函数,但那个函数只被声明于Rational内,并没有被定义出来。
尽管我们意图令此class外部的operator* template提供定义式,但是行不通。
最简单的方法是:

template<typename T>
class Rational
{ …

    friend const Rational<T> operator*(const Rational& lhs, const Rational& rhs)
    {

       return Rational<T>(lhs.numerator()*rhs.numerator(), lhs.denominaotr()*rhs.denominaotr());

    }

};

为了让类型转换可能发生于所有实参身上,我们需要一个 non-member 函数; 为了让这个函数自动具现化,
我们需要将它声明在class内部。而满足两项的只有一个办法:在class内部声明一个friend函数。

当我们编写一个class template, 而它所提供之“与此template相关的”函数支持"所有函数之隐式类型转换"时,
请将那些函数定义为"class template 内部的 friend函数".
 
 
 条款47:  请使用 traits classes 表现类型信息
 参考<STL源码剖析>内的实现
 
 
 条款48: 认识template元编程
 
  TMP是编写template-based C++程序并执行编译期的过程。TMP是以C++写成,执行于C++编译器内的程序。一旦TMP程序结束执行,其输出也就是templates具现出来的若干C++源码,便会一如往常地被编译。
  TMP(template metaprogramming)模板元编程可将工作由运行期移往编译期,因而得以实现早期错误侦测和更高的行为效率。
  TMP是图灵完全的,足以计算任何事物。条款47中的traits就是TMP,traits引发编译期发生于类型身上的if … else计算。

  示例:编译期计算阶乘!

  template<unsigned n>

  struct Factorial{

         enum {value = n * Factorial<n-1>::value};

  };

  template<>

  struct Fatorial<0>{

   enum {value = 1};

   };

   std::cout<<Factorial<5>::value<<endl; //输出120

这篇关于Effective C++ 7.0 模板与泛型编程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1042290

相关文章

Java并发编程之如何优雅关闭钩子Shutdown Hook

《Java并发编程之如何优雅关闭钩子ShutdownHook》这篇文章主要为大家详细介绍了Java如何实现优雅关闭钩子ShutdownHook,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起... 目录关闭钩子简介关闭钩子应用场景数据库连接实战演示使用关闭钩子的注意事项开源框架中的关闭钩子机制1.

C#如何调用C++库

《C#如何调用C++库》:本文主要介绍C#如何调用C++库方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录方法一:使用P/Invoke1. 导出C++函数2. 定义P/Invoke签名3. 调用C++函数方法二:使用C++/CLI作为桥接1. 创建C++/CL

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

C# Where 泛型约束的实现

《C#Where泛型约束的实现》本文主要介绍了C#Where泛型约束的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录使用的对象约束分类where T : structwhere T : classwhere T : ne

Linux下如何使用C++获取硬件信息

《Linux下如何使用C++获取硬件信息》这篇文章主要为大家详细介绍了如何使用C++实现获取CPU,主板,磁盘,BIOS信息等硬件信息,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录方法获取CPU信息:读取"/proc/cpuinfo"文件获取磁盘信息:读取"/proc/diskstats"文

IDEA自动生成注释模板的配置教程

《IDEA自动生成注释模板的配置教程》本文介绍了如何在IntelliJIDEA中配置类和方法的注释模板,包括自动生成项目名称、包名、日期和时间等内容,以及如何定制参数和返回值的注释格式,需要的朋友可以... 目录项目场景配置方法类注释模板定义类开头的注释步骤类注释效果方法注释模板定义方法开头的注释步骤方法注

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a