基于CycleGAN的图像风格转换

2024-06-08 08:36
文章标签 图像 转换 风格 cyclegan

本文主要是介绍基于CycleGAN的图像风格转换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于CycleGAN的图像风格转换

  • 1.导入所需要的包和库:
  • 2.将一个Tensor转换为图像:
  • 3.数据加载:
  • 4.图像变换:
  • 5.加载和预处理训练数据:
  • 6.定义了一个残差块:
  • 7.生成器:
  • 8.判断器:
  • 9.数据缓存器:
  • 10.执行生成器的训练步骤:
  • 11.训练判别器:
  • 12.损失打印,存储伪造图片:

1.导入所需要的包和库:

from random import randint
import numpy as np 
import torch
torch.set_default_tensor_type(torch.FloatTensor)
import torch.nn as nn
import torch.optim as optim
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import os
import matplotlib.pyplot as plt
import torch.nn.functional as F
from torch.autograd import Variable
from torchvision.utils import save_image
import shutil
import cv2
import random
from PIL import Image
import itertools

2.将一个Tensor转换为图像:

def to_img(x):out = 0.5 * (x + 1)out = out.clamp(0, 1)  out = out.view(-1, 3, 256, 256)  return out

3.数据加载:

data_path = os.path.abspath('D:/XUNLJ/data')
image_size = 256
batch_size = 1

4.图像变换:

  • 首先,图像会被调整到略大于原始大小,然后随机裁剪回原始大小,接着进行水平翻转,转换为张量格式,最后进行标准化处理
transform = transforms.Compose([transforms.Resize(int(image_size * 1.12), Image.BICUBIC), transforms.RandomCrop(image_size), transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))])

5.加载和预处理训练数据:

  • 文件夹中随机选择一批A类和B类图像,应用预定义的图像变换,并将它们转换为适合神经网络输入的张量格式
def _get_train_data(batch_size=1):train_a_filepath = data_path + '\\trainA\\'train_b_filepath = data_path + '\\trainB\\'train_a_list = os.listdir(train_a_filepath)train_b_list = os.listdir(train_b_filepath)train_a_result = []train_b_result = [] numlist = random.sample(range(0, len(train_a_list)), batch_size)for i in numlist:a_filename = train_a_list[i]a_img = Image.open(train_a_filepath + a_filename).convert('RGB')res_a_img = transform(a_img)train_a_result.append(torch.unsqueeze(res_a_img, 0))b_filename = train_b_list[i]b_img = Image.open(train_b_filepath + b_filename).convert('RGB')res_b_img = transform(b_img)train_b_result.append(torch.unsqueeze(res_b_img, 0))return torch.cat(train_a_result, dim=0), torch.cat(train_b_result, dim=0)

6.定义了一个残差块:

  • 定义了一个简单的残差块,它包含两个卷积层和实例归一化,以及ReLU激活函数
class ResidualBlock(nn.Module):def __init__(self, in_features):super(ResidualBlock, self).__init__()self.block_layer = nn.Sequential(nn.ReflectionPad2d(1),nn.Conv2d(in_features, in_features, 3),nn.InstanceNorm2d(in_features),nn.ReLU(inplace=True),nn.ReflectionPad2d(1),nn.Conv2d(in_features, in_features, 3),nn.InstanceNorm2d(in_features))def forward(self, x):return x + self.block_layer(x)

7.生成器:

  • 网络包含卷积层、下采样层、残差块和上采样层,用于将噪声输入转换为高质量的图像输出
class Generator(nn.Module):def __init__(self):super(Generator, self).__init__()model = [nn.ReflectionPad2d(3), nn.Conv2d(3, 64, 7), nn.InstanceNorm2d(64), nn.ReLU(inplace=True)]in_features = 64out_features = in_features * 2for _ in range(2):model += [nn.Conv2d(in_features, out_features, 3, stride=2, padding=1), nn.InstanceNorm2d(out_features), nn.ReLU(inplace=True)]in_features = out_featuresout_features = in_features*2for _ in range(9):model += [ResidualBlock(in_features)]out_features = in_features // 2for _ in range(2):model += [nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1), nn.InstanceNorm2d(out_features), nn.ReLU(inplace=True)]in_features = out_featuresout_features = in_features // 2model += [nn.ReflectionPad2d(3), nn.Conv2d(64, 3, 7), nn.Tanh()]self.gen = nn.Sequential( * model)def forward(self, x):x = self.gen(x)return x 

8.判断器:

  • 用于判断输入图像的真实性,含卷积层和LeakyReLU激活函数,用于从输入图像中提取特征,通过平均池化和重塑来生成一个与图像真实性相关的分数
class Discriminator(nn.Module):def __init__(self):super(Discriminator, self).__init__()self.dis = nn.Sequential(nn.Conv2d(3, 64, 4, 2, 1, bias=False),nn.LeakyReLU(0.2, inplace=True),nn.Conv2d(64, 128, 4, 2, 1, bias=False),nn.InstanceNorm2d(128),nn.LeakyReLU(0.2, inplace=True),nn.Conv2d(128, 256, 4, 2, 1, bias=False),nn.InstanceNorm2d(256),nn.LeakyReLU(0.2, inplace=True),nn.Conv2d(256, 512, 4, padding=1),nn.InstanceNorm2d(512),nn.LeakyReLU(0.2, inplace=True),nn.Conv2d(512, 1, 4, padding=1))        def forward(self, x):x = self.dis(x)return F.avg_pool2d(x, x.size()[2:]).view(x.size()[0], -1)

9.数据缓存器:

  • 用于存储和复用生成器生成的图像
class ReplayBuffer():def __init__(self, max_size=50):self.max_size = max_sizeself.data = []
  • 将新的数据推入缓存,并弹出旧的数据;如果缓存未满,则将数据推入缓存。如果缓存已满,则随机替换缓存中的一个数据。
   def push_and_pop(self, data):to_return = []for element in data.data:element = torch.unsqueeze(element, 0)if len(self.data) < self.max_size:self.data.append(element)to_return.append(element)else:if random.uniform(0,1) > 0.5:i = random.randint(0, self.max_size-1)to_return.append(self.data[i].clone())self.data[i] = elementelse:to_return.append(element)return Variable(torch.cat(to_return))
  • 实例化ReplayBuffer类,分别用于存储生成的A类和B类图像
fake_A_buffer = ReplayBuffer()
fake_B_buffer = ReplayBuffer()
  • 定义生成器网络,用于从A类图像生成B类图像
netG_A2B = Generator()
netG_B2A = Generator()
  • 定义判别器网络,用于判断A类和B类图像的真实性
netD_A = Discriminator()
netD_B = Discriminator()
  • 定义GAN损失函数和循环一致性损失函数
criterion_GAN = torch.nn.MSELoss()
criterion_cycle = torch.nn.L1Loss()
  • 定义身份损失函数
criterion_identity = torch.nn.L1Loss()
  • 定义优化器的参数
d_learning_rate = 3e-4  # 3e-4
  • 定义生成器和判别器的学习器
g_learning_rate = 3e-4
optim_betas = (0.5, 0.999)g_optimizer = optim.Adam(itertools.chain(netG_A2B.parameters(), netG_B2A.parameters()), 
lr=d_learning_rate)
da_optimizer = optim.Adam(netD_A.parameters(), lr=d_learning_rate)
db_optimizer = optim.Adam(netD_B.parameters(), lr=d_learning_rate)
  • 定义训练的轮数
num_epochs = 1000 

10.执行生成器的训练步骤:

  • 计算多个损失函数的值,综合考虑了图像的身份、对抗和循环一致性,来生成更真实的图像
same_B = netG_A2B(real_b).float()loss_identity_B = criterion_identity(same_B, real_b) * 5.0   same_A = netG_B2A(real_a).float()loss_identity_A = criterion_identity(same_A, real_a) * 5.0fake_B = netG_A2B(real_a).float()pred_fake = netD_B(fake_B).float()loss_GAN_A2B = criterion_GAN(pred_fake, target_real)fake_A = netG_B2A(real_b).float()pred_fake = netD_A(fake_A).float()loss_GAN_B2A = criterion_GAN(pred_fake, target_real)recovered_A = netG_B2A(fake_B).float()loss_cycle_ABA = criterion_cycle(recovered_A, real_a) * 10.0recovered_B = netG_A2B(fake_A).float()loss_cycle_BAB = criterion_cycle(recovered_B, real_b) * 10.0  loss_G = (loss_identity_A + loss_identity_B + loss_GAN_A2B + loss_GAN_B2A + loss_cycle_ABA + loss_cycle_BAB)loss_G.backward()    g_optimizer.step()

11.训练判别器:

  • 训练判别器A:通过计算真实图像和生成图像的对抗损失,来训练判别器以更准确地进行区分
da_optimizer.zero_grad()pred_real = netD_A(real_a).float()loss_D_real = criterion_GAN(pred_real, target_real)fake_A = fake_A_buffer.push_and_pop(fake_A)pred_fake = netD_A(fake_A.detach()).float()loss_D_fake = criterion_GAN(pred_fake, target_fake)loss_D_A = (loss_D_real + loss_D_fake) * 0.5loss_D_A.backward()da_optimizer.step()

训练判别器B:

db_optimizer.zero_grad()pred_real = netD_B(real_b)loss_D_real = criterion_GAN(pred_real, target_real)fake_B = fake_B_buffer.push_and_pop(fake_B)pred_fake = netD_B(fake_B.detach())loss_D_fake = criterion_GAN(pred_fake, target_fake)loss_D_B = (loss_D_real + loss_D_fake) * 0.5loss_D_B.backward()db_optimizer.step()

12.损失打印,存储伪造图片:

print('Epoch[{}],loss_G:{:.6f} ,loss_D_A:{:.6f},loss_D_B:{:.6f}'.format(epoch, loss_G.data.item(), loss_D_A.data.item(), loss_D_B.data.item()))if (epoch + 1) % 20 == 0 or epoch == 0:  b_fake = to_img(fake_B.data)a_fake = to_img(fake_A.data)a_real = to_img(real_a.data)b_real = to_img(real_b.data)save_image(a_fake, '../tmp/a_fake.png') save_image(b_fake, '../tmp/b_fake.png') save_image(a_real, '../tmp/a_real.png') save_image(b_real, '../tmp/b_real.png') 

这篇关于基于CycleGAN的图像风格转换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1041679

相关文章

java Long 与long之间的转换流程

《javaLong与long之间的转换流程》Long类提供了一些方法,用于在long和其他数据类型(如String)之间进行转换,本文将详细介绍如何在Java中实现Long和long之间的转换,感... 目录概述流程步骤1:将long转换为Long对象步骤2:将Longhttp://www.cppcns.c

python编写朋克风格的天气查询程序

《python编写朋克风格的天气查询程序》这篇文章主要为大家详细介绍了一个基于Python的桌面应用程序,使用了tkinter库来创建图形用户界面并通过requests库调用Open-MeteoAPI... 目录工具介绍工具使用说明python脚本内容如何运行脚本工具介绍这个天气查询工具是一个基于 Pyt

在Java中将XLS转换为XLSX的实现方案

《在Java中将XLS转换为XLSX的实现方案》在本文中,我们将探讨传统ExcelXLS格式与现代XLSX格式的结构差异,并为Java开发者提供转换方案,通过了解底层原理、性能优势及实用工具,您将掌握... 目录为什么升级XLS到XLSX值得投入?实际转换过程解析推荐技术方案对比Apache POI实现编程

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

c/c++的opencv图像金字塔缩放实现

《c/c++的opencv图像金字塔缩放实现》本文主要介绍了c/c++的opencv图像金字塔缩放实现,通过对原始图像进行连续的下采样或上采样操作,生成一系列不同分辨率的图像,具有一定的参考价值,感兴... 目录图像金字塔简介图像下采样 (cv::pyrDown)图像上采样 (cv::pyrUp)C++ O

Python使用FFmpeg实现高效音频格式转换工具

《Python使用FFmpeg实现高效音频格式转换工具》在数字音频处理领域,音频格式转换是一项基础但至关重要的功能,本文主要为大家介绍了Python如何使用FFmpeg实现强大功能的图形化音频转换工具... 目录概述功能详解软件效果展示主界面布局转换过程截图完成提示开发步骤详解1. 环境准备2. 项目功能结

使用Python实现网页表格转换为markdown

《使用Python实现网页表格转换为markdown》在日常工作中,我们经常需要从网页上复制表格数据,并将其转换成Markdown格式,本文将使用Python编写一个网页表格转Markdown工具,需... 在日常工作中,我们经常需要从网页上复制表格数据,并将其转换成Markdown格式,以便在文档、邮件或

Python将字符串转换为小写字母的几种常用方法

《Python将字符串转换为小写字母的几种常用方法》:本文主要介绍Python中将字符串大写字母转小写的四种方法:lower()方法简洁高效,手动ASCII转换灵活可控,str.translate... 目录一、使用内置方法 lower()(最简单)二、手动遍历 + ASCII 码转换三、使用 str.tr

Java如何将文件内容转换为MD5哈希值

《Java如何将文件内容转换为MD5哈希值》:本文主要介绍Java如何将文件内容转换为MD5哈希值的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java文件内容转换为MD5哈希值一个完整的Java示例代码代码解释注意事项总结Java文件内容转换为MD5