LeetCode题练习与总结:三角形最小路径和--120

2024-06-08 08:28

本文主要是介绍LeetCode题练习与总结:三角形最小路径和--120,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、题目描述

给定一个三角形 triangle ,找出自顶向下的最小路径和。

每一步只能移动到下一行中相邻的结点上。相邻的结点 在这里指的是 下标 与 上一层结点下标 相同或者等于 上一层结点下标 + 1 的两个结点。也就是说,如果正位于当前行的下标 i ,那么下一步可以移动到下一行的下标 i 或 i + 1 。

示例 1:

输入:triangle = [[2],[3,4],[6,5,7],[4,1,8,3]]
输出:11
解释:如下面简图所示:23 46 5 7
4 1 8 3
自顶向下的最小路径和为 11(即,2 + 3 + 5 + 1 = 11)。

示例 2:

输入:triangle = [[-10]]
输出:-10

提示:

  • 1 <= triangle.length <= 200
  • triangle[0].length == 1
  • triangle[i].length == triangle[i - 1].length + 1
  • -10^4 <= triangle[i][j] <= 10^4

二、解题思路

这个问题可以通过动态规划来解决。我们可以从三角形的底部开始,逐层向上计算每个节点到底部的最小路径和。对于每个节点,其最小路径和等于其值加上其下一层相邻节点的最小路径和。这样,当我们计算到三角形的顶部时,顶部的值就是整个三角形的最小路径和。

具体步骤如下:

  1. 初始化一个与三角形相同大小的二维数组dp,用于存储每个节点到底部的最小路径和。
  2. 从三角形的最后一行开始,将这一行的值复制到dp的对应行。
  3. 从倒数第二行开始,逐行向上计算,对于每一行的每个节点,其最小路径和为该节点的值加上其下一行相邻节点的最小路径和中的较小值。
  4. 当计算到三角形的顶部时,dp[0][0]就是整个三角形的最小路径和。
  5. 返回dp[0][0]作为结果。

三、具体代码

class Solution {public int minimumTotal(List<List<Integer>> triangle) {int n = triangle.size();int[][] dp = new int[n][n];// 初始化dp数组的最后一行for (int i = 0; i < n; i++) {dp[n - 1][i] = triangle.get(n - 1).get(i);}// 从倒数第二行开始向上计算for (int i = n - 2; i >= 0; i--) {for (int j = 0; j <= i; j++) {dp[i][j] = triangle.get(i).get(j) + Math.min(dp[i + 1][j], dp[i + 1][j + 1]);}}// 返回顶部节点的最小路径和return dp[0][0];}
}

四、时间复杂度和空间复杂度

1. 时间复杂度
  • 初始化dp数组的最后一行需要遍历n个元素,时间复杂度为O(n)。
  • 双层循环中,外层循环执行了n-1次,内层循环在最坏情况下(即倒数第二行)执行了n-1次。
  • 因此,内层循环的总执行次数是1 + 2 + 3 + … + (n-1),这是一个等差数列求和,其和为((1 + n-1) * (n-1)) / 2。
  • 综合外层循环和内层循环,总的时间复杂度是O(n^2)。
2. 空间复杂度
  • dp数组的大小为n x n,用于存储每一行的最小路径和。
  • 因此,空间复杂度主要取决于dp数组的大小,即O(n^2)。

综上所述,代码的时间复杂度是O(n^2),空间复杂度是O(n^2)。

五、总结知识点

  1. 动态规划:这是一种通过将问题分解为更小的子问题来解决复杂问题的方法,通常用于优化问题,如最短路径、最大子数组和等。

  2. 二维数组dp是一个二维数组,用于存储每一行的最小路径和。在Java中,它被初始化为int[n][n],其中n是三角形的行数。

  3. 列表(List)的使用List<List<Integer>> triangle 是一个包含整数列表的列表,用于存储杨辉三角的数据。在这里,它被用来存储输入的三角形。

  4. 循环结构for 循环用于重复执行一系列操作。这里有双层循环,外层循环用于控制行数,内层循环用于计算每一行的最小路径和。

  5. 数学函数Math.min() 函数用于返回两个整数中的较小值。

  6. 数组的索引操作:在更新每一行元素时,代码通过索引来访问和修改二维数组中的元素。

  7. 列表的元素访问triangle.get(i).get(j) 用于获取列表中索引为 i 的子列表中索引为 j 的元素值。

以上就是解决这个问题的详细步骤,希望能够为各位提供启发和帮助。

这篇关于LeetCode题练习与总结:三角形最小路径和--120的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1041660

相关文章

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

利用Python把路径转为绝对路径的方法

《利用Python把路径转为绝对路径的方法》在Python中,如果你有一个相对路径并且想将其转换为绝对路径,你可以使用Path对象的resolve()方法,Path是Python标准库pathlib中... 目录1. os.path.abspath 是什么?怎么用?基本用法2. os.path.abspat

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Spring 依赖注入与循环依赖总结

《Spring依赖注入与循环依赖总结》这篇文章给大家介绍Spring依赖注入与循环依赖总结篇,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. Spring 三级缓存解决循环依赖1. 创建UserService原始对象2. 将原始对象包装成工

SpringBoot路径映射配置的实现步骤

《SpringBoot路径映射配置的实现步骤》本文介绍了如何在SpringBoot项目中配置路径映射,使得除static目录外的资源可被访问,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一... 目录SpringBoot路径映射补:springboot 配置虚拟路径映射 @RequestMapp

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

在Java中实现线程之间的数据共享的几种方式总结

《在Java中实现线程之间的数据共享的几种方式总结》在Java中实现线程间数据共享是并发编程的核心需求,但需要谨慎处理同步问题以避免竞态条件,本文通过代码示例给大家介绍了几种主要实现方式及其最佳实践,... 目录1. 共享变量与同步机制2. 轻量级通信机制3. 线程安全容器4. 线程局部变量(ThreadL

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统