[Algorithm][动态规划][01背包问题][模板 背包][分割等和子集]详细讲解 +何为背包问题?

本文主要是介绍[Algorithm][动态规划][01背包问题][模板 背包][分割等和子集]详细讲解 +何为背包问题?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 0.何为背包问题?
  • 1.模板 背包
    • 1.题目链接
    • 2.算法原理详解
    • 3.代码实现
  • 2.分割等和子集
    • 1.题目链接
    • 2.算法原理详解
    • 3.代码实现


0.何为背包问题?

  • 背包问题:有限制条件下的"组合问题"

  • 你有一个背包,地上有一堆物品,挑选一些物品放入背包中

    • 问:最大能挑选出来的价值是多少?
  • 限制因素

    • 物品的属性:价值等
    • 背包的属性:容量大小等
    • 背包是要求必装满还是不必装满?
      请添加图片描述
  • 当研究一个问题,出现选或者不选的情况,思路就可以往01背包上靠

  • 注意:背包问题是必须要掌握的算法问题


1.模板 背包

1.题目链接

  • [模板] 背包

2.算法原理详解

  • 注意:01背包问题是所有背包问题的基础,此处的分析思路,可以用到很多题里面
  • 思路
    • 确定状态表示 -> dp[i][j]的含义

      • dp[i]:从前i个物品中选,所有选法中,能挑选出来的最大价值 ×
        • 无法得知背包容量
      • 不要求恰好装满
        • dp[i][j]:从前i个物品中挑选,总体积不超过j,所有选法中,能挑选出来的最大价值
      • 要求恰好装满
        • dp[i][j]:从前i个物品中挑选,总体积恰好等于j,所有选法中,能挑选出来的最大价值
    • 推导状态转移方程:根据最后一个位置的情况,分情况讨论

      • 不要求恰好装满:j - v[i] >= 0是为了确保背包此时容量足够塞下当前物品
        请添加图片描述

      • 要求恰好装满dp[i][j] == -1表示没有这种情况,即此时总体积凑不到j
        请添加图片描述

    • 初始化:

      • 不要求恰好装满vector<vector<int>> dp(n + 1, vector<int>(V + 1))
      • 要求恰好装满:第一行除第一个位置,其余都为-1
    • 确定填表顺序:从上往下

    • 确定返回值:

      • 不要求恰好装满dp[n][V]
      • 要求恰好装满dp[n][V] == -1 ? 0 : dp[n][V]
  • 滚动数组优化空间
    • 每次填值,只依赖上一行的值

      • 所以,理论上只需要两行一维数组,就可以解决问题
    • 可以一个一维数组就优化掉此问题

      • 但是如果从左往右遍历数组,会影响动态规划填值
        • 因为原本的填值过程,会依赖左上方的值
      • 此时,只需要从右往左遍历该数组,就不会影响动态规划的规程
        请添加图片描述

      请添加图片描述

    • 操作

      • 删除所有的横坐标
      • 修改一下j的遍历顺序
    • 注意不要去强行解释优化后的妆台表示以及状态转移方程,费时费力还没啥意义


3.代码实现

// v1.0
int main()
{int n = 0, V = 0;cin >> n >> V;vector<int> v(n + 1), w(n + 1);for(int i = 1; i <= n; i++){cin >> v[i] >> w[i];}vector<vector<int>> dp(n + 1, vector<int>(V + 1));// Q1for(int i = 1; i <= n; i++){for(int j = 1; j <= V; j++){dp[i][j] = dp[i - 1][j];if(j >= v[i]){dp[i][j] = max(dp[i][j], dp[i - 1][j - v[i]] + w[i]);}}}cout << dp[n][V] << endl;// Q2dp.resize(n + 1, vector<int>(V + 1));for(int i = 1; i <= V; i++){dp[0][i] = -1;}for(int i = 1; i <= n; i++){for(int j = 1; j <= V; j++){dp[i][j] = dp[i - 1][j];if(j >= v[i] && dp[i - 1][j - v[i]] != -1){dp[i][j] = max(dp[i][j], dp[i - 1][j - v[i]] + w[i]);}}}cout << (dp[n][V] == -1 ? 0 : dp[n][V]) << endl;return 0;
}
-----------------------------------------------------------------------------
// v2.0 滚动数组优化
int main()
{int n = 0, V = 0;cin >> n >> V;vector<int> v(n + 1), w(n + 1);for(int i = 1; i <= n; i++){cin >> v[i] >> w[i];}vector<int> dp(V + 1);// Q1for(int i = 1; i <= n; i++){for(int j = V; j >= v[i]; j--){dp[j] = max(dp[j], dp[j - v[i]] + w[i]);}}cout << dp[V] << endl;// Q2dp.resize(V + 1, 0);for(int i = 1; i <= V; i++){dp[i] = -1;}for(int i = 1; i <= n; i++){for(int j = V; j >= v[i]; j--){if(dp[j - v[i]] != -1){dp[j] = max(dp[j], dp[j - v[i]] + w[i]);}}}cout << (dp[V] == -1 ? 0 : dp[V]) << endl;return 0;
}

2.分割等和子集

1.题目链接

  • 分割等和子集

2.算法原理详解

  • 问题转化:在数组中选择一些数出来,让这些数的和等于sum / 2 --> 01背包
  • 思路
    • 确定状态表示 -> dp[i][j]的含义

      • dp[i]j]:从前i个数中****,所有的选法中,能否凑成j这个数
    • 推导状态转移方程:根据最后一个位置的情况,分情况讨论

      • dp[i][j] = dp[i - 1][j] || dp[i - 1][j - nums[i]]
        请添加图片描述
    • 初始化:

      • 多开一行及一列虚拟结点
        请添加图片描述
    • 确定填表顺序:从上往下

    • 确定返回值:dp[n][sum / 2]

  • 滚动数字优化同[模板] 背包

3.代码实现

// v1.0
bool canPartition(vector<int>& nums) 
{int n = nums.size(), sum = 0;for(auto& x : nums){sum += x;}if(sum % 2) return false;int aim = sum / 2;vector<vector<bool>> dp(n + 1, vector<bool>(aim + 1));// Initfor(int i = 1; i <= n; i++){dp[i][0] = true;}// DPfor(int i = 1; i <= n; i++){for(int j = 1; j <= aim; j++){dp[i][j] = dp[i - 1][j];if(j >= nums[i - 1]){dp[i][j] = dp[i][j] || dp[i - 1][j - nums[i - 1]];}}}return dp[n][aim];
}
----------------------------------------------------------------------
// v2.0 滚动数组优化
bool canPartition(vector<int>& nums) 
{int n = nums.size(), sum = 0;for(auto& x : nums){sum += x;}if(sum % 2) return false;int aim = sum / 2;vector<bool> dp(aim + 1);                dp[0] = true;// DPfor(int i = 1; i <= n; i++){for(int j = aim; j >= nums[i - 1]; j--){dp[j] = dp[j] || dp[j - nums[i - 1]];}}return dp[aim];
}

这篇关于[Algorithm][动态规划][01背包问题][模板 背包][分割等和子集]详细讲解 +何为背包问题?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1041529

相关文章

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Apache Ignite 与 Spring Boot 集成详细指南

《ApacheIgnite与SpringBoot集成详细指南》ApacheIgnite官方指南详解如何通过SpringBootStarter扩展实现自动配置,支持厚/轻客户端模式,简化Ign... 目录 一、背景:为什么需要这个集成? 二、两种集成方式(对应两种客户端模型) 三、方式一:自动配置 Thick

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

2025版mysql8.0.41 winx64 手动安装详细教程

《2025版mysql8.0.41winx64手动安装详细教程》本文指导Windows系统下MySQL安装配置,包含解压、设置环境变量、my.ini配置、初始化密码获取、服务安装与手动启动等步骤,... 目录一、下载安装包二、配置环境变量三、安装配置四、启动 mysql 服务,修改密码一、下载安装包安装地

RabbitMQ消费端单线程与多线程案例讲解

《RabbitMQ消费端单线程与多线程案例讲解》文章解析RabbitMQ消费端单线程与多线程处理机制,说明concurrency控制消费者数量,max-concurrency控制最大线程数,prefe... 目录 一、基础概念详细解释:举个例子:✅ 单消费者 + 单线程消费❌ 单消费者 + 多线程消费❌ 多

在macOS上安装jenv管理JDK版本的详细步骤

《在macOS上安装jenv管理JDK版本的详细步骤》jEnv是一个命令行工具,正如它的官网所宣称的那样,它是来让你忘记怎么配置JAVA_HOME环境变量的神队友,:本文主要介绍在macOS上安装... 目录前言安装 jenv添加 JDK 版本到 jenv切换 JDK 版本总结前言China编程在开发 Java