torch.cat 与 torch.concat函数

2024-06-08 04:28
文章标签 函数 torch cat concat

本文主要是介绍torch.cat 与 torch.concat函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 区别
  • torch.cat介绍
    • 作用
    • 参数
    • 使用实例
      • 关于参数dim为None的使用

区别

  先说结论:没有区别在功能、用法以及作用上,concat函数就是cat函数的别名(官方就是这样说的)。下面截图为证:在这里插入图片描述
  因此接下来就主要是介绍 torch.cat 函数的功能和用法。

torch.cat介绍

参考🔗:link

torch.cat(tensors, dim=0, *, out=None) → Tensor

作用

  将给定序列的张量在给定维度上连接起来。所有张量必须具有相同的形状(除了连接维度之外),或者是一个尺寸为(0,)的一维空张量。
Concatenates the given sequence of seq tensors in the given dimension. All tensors must either have the same shape (except in the concatenating dimension) or be a 1-D empty tensor with size (0,)

参数

  • 第一个参数 tensors :除了要连接的维度外,其他维度的形状都要相同的张量。tensors: Tuple[Tensor, …] | List[Tensor]。写法可以是(x, x, x)or [x, x, x]
  • 第二个参数 dim:(int, optiona)指定的连接的维度,可选,默认就是 dim=0,表示水平方向上拼接,即行拼接。这个参数可以是整数,负数,0,以及没有。
  • 其他参数不用管。

使用实例

import torch
x = torch.randn(2, 3)
x
# 输出
tensor([[ 1.3524,  0.7867, -0.1423],[ 1.1235,  0.0221, -0.5478]])

dim=0 表示水平方向的拼接,也就说从shape(2, 3) -> shape(6, 3):

y = torch.cat([x, x, x], dim=0)
y
# 输出
tensor([[ 1.3524,  0.7867, -0.1423],[ 1.1235,  0.0221, -0.5478],[ 1.3524,  0.7867, -0.1423],[ 1.1235,  0.0221, -0.5478],[ 1.3524,  0.7867, -0.1423],[ 1.1235,  0.0221, -0.5478]])

dim=1表示:

z = torch.cat((x, x, x), dim=1)
z
# 输出
tensor([[ 1.3524,  0.7867, -0.1423,  1.3524,  0.7867, -0.1423,  1.3524,  0.7867, -0.1423],[ 1.1235,  0.0221, -0.5478,  1.1235,  0.0221, -0.5478,  1.1235,  0.0221, -0.5478]])

重点关注一下 , dim=-1

xy = torch.cat((x, x, x), dim=-1)
xy
# 输出
tensor([[ 1.3524,  0.7867, -0.1423,  1.3524,  0.7867, -0.1423,  1.3524,  0.7867, -0.1423],[ 1.1235,  0.0221, -0.5478,  1.1235,  0.0221, -0.5478,  1.1235,  0.0221, -0.5478]])

  没错 dim=-1的结果和dim=1的结果是一致的,但是我要说一下dim=-1表示的是最后一个维度,所以 对于 我举的这个例子只有两个维度而言,dim=-1和dim=1是等效的。

关于参数dim为None的使用

当时我的第一反应是 那我直接就不写这个参数不就得了嘛 所以我尝试了下面的代码,也确实发现和dim=0的效果是一致的。

yy = torch.cat([x, x, x])
yy

但是我在查找的时候遇到有文章是将None赋值给参数dim,所以我尝试后出现了问题如下:在这里插入图片描述
文章链接🔗:link。于是我复制文章的代码运行,发现依旧报错。(无语 误导人)

在这里插入图片描述
下面图片是查找的文章的说法:
在这里插入图片描述
而我问了chatgpt的回答:在这里插入图片描述

References:
【1】https://discuss.pytorch.org/t/what-does-dim-1-mean-in-torch-cat/110883

这篇关于torch.cat 与 torch.concat函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1041202

相关文章

Python函数返回多个值的多种方法小结

《Python函数返回多个值的多种方法小结》在Python中,函数通常用于封装一段代码,使其可以重复调用,有时,我们希望一个函数能够返回多个值,Python提供了几种不同的方法来实现这一点,需要的朋友... 目录一、使用元组(Tuple):二、使用列表(list)三、使用字典(Dictionary)四、 使

PyTorch中cdist和sum函数使用示例详解

《PyTorch中cdist和sum函数使用示例详解》torch.cdist是PyTorch中用于计算**两个张量之间的成对距离(pairwisedistance)**的函数,常用于点云处理、图神经网... 目录基本语法输出示例1. 简单的 2D 欧几里得距离2. 批量形式(3D Tensor)3. 使用不

MySQL 字符串截取函数及用法详解

《MySQL字符串截取函数及用法详解》在MySQL中,字符串截取是常见的操作,主要用于从字符串中提取特定部分,MySQL提供了多种函数来实现这一功能,包括LEFT()、RIGHT()、SUBST... 目录mysql 字符串截取函数详解RIGHT(str, length):从右侧截取指定长度的字符SUBST

Kotlin运算符重载函数及作用场景

《Kotlin运算符重载函数及作用场景》在Kotlin里,运算符重载函数允许为自定义类型重新定义现有的运算符(如+-…)行为,从而让自定义类型能像内置类型那样使用运算符,本文给大家介绍Kotlin运算... 目录基本语法作用场景类对象数据类型接口注意事项在 Kotlin 里,运算符重载函数允许为自定义类型重

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

如何在pycharm安装torch包

《如何在pycharm安装torch包》:本文主要介绍如何在pycharm安装torch包方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录在pycharm安装torch包适http://www.chinasem.cn配于我电脑的指令为适用的torch包为总结在p

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI