利用ArcGIS对长江三角洲地区的gdp水平进行聚类

2024-06-08 01:20

本文主要是介绍利用ArcGIS对长江三角洲地区的gdp水平进行聚类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、导入矢量图、数据

在这里插入图片描述
长三角地区矢量图
长三角地区矢量图对应数据

2、连接

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3、设置属性将人均gdp数据导入

在这里插入图片描述

4、设置标注和图例

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
选择布局视图
在这里插入图片描述

5、聚类

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2020年人均gdp地区聚类

6、2005~2020年各地区人均gdp可视化及聚类汇总

(1)2005~2020可视化

2005

在这里插入图片描述

2010在这里插入图片描述

2015

在这里插入图片描述

2020

在这里插入图片描述

(2)根据K-means轮廓系数确定聚类簇数

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
2015 2010 2015 2020 分别对应的最佳聚类簇数为 2 4 7 5
可以根据这个结果进行分组分析
代码:

import pandas as pd
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
import matplotlib.pyplot as plt# 读取CSV文件
file_path = 'datadata.csv'
data = pd.read_csv(file_path, encoding="GB2312")# 查看数据
print(data.head())# 初始化一个字典来存储各年的轮廓系数
silhouette_scores_dict = {}# 对每一年的GDP数据进行聚类
years = ['2020', '2015', '2010', '2005']for year in years:gdp_data = data[[year]]# 确定最佳K值silhouette_scores = []K = range(2, 11)  # 假设我们考虑2到10个聚类簇for k in K:kmeans = KMeans(n_clusters=k, random_state=42)labels = kmeans.fit_predict(gdp_data)score = silhouette_score(gdp_data, labels)silhouette_scores.append(score)# 保存轮廓系数silhouette_scores_dict[year] = silhouette_scores# 绘制轮廓系数图plt.figure(figsize=(8, 4))plt.plot(K, silhouette_scores, marker='o')plt.xlabel('Number of clusters, K')plt.ylabel('Silhouette Score')plt.title(f'Silhouette Score for K-means Clustering ({year})')plt.savefig(f'silhouette_score_{year}.png')  # 保存图片plt.show()# 找出最佳K值best_k = K[silhouette_scores.index(max(silhouette_scores))]print(f'{year} 年最佳聚类簇数: {best_k}')# 使用最佳K值进行K-means聚类kmeans = KMeans(n_clusters=best_k, random_state=42)labels = kmeans.fit_predict(gdp_data)# 将聚类结果添加到原始数据中data[f'Cluster_{year}'] = labels# 打印聚类结果print(f'{year} 年聚类结果:')print(data[[year, f'Cluster_{year}']].head())# 查看聚类结果
print(data.head())# 保存聚类结果到CSV文件
data.to_csv('clustered_gdp_data.csv', index=False)

(3)根据聚类结果得出聚类可视化及文档

(4)为了方便分析变化 4年都选择簇数为3

2005
在这里插入图片描述
2010
在这里插入图片描述
2015
在这里插入图片描述
2020
在这里插入图片描述

(5)将图片背景设置为透明色

在这里插入图片描述
在这里插入图片描述

这篇关于利用ArcGIS对长江三角洲地区的gdp水平进行聚类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1040848

相关文章

Linux使用scp进行远程目录文件复制的详细步骤和示例

《Linux使用scp进行远程目录文件复制的详细步骤和示例》在Linux系统中,scp(安全复制协议)是一个使用SSH(安全外壳协议)进行文件和目录安全传输的命令,它允许在远程主机之间复制文件和目录,... 目录1. 什么是scp?2. 语法3. 示例示例 1: 复制本地目录到远程主机示例 2: 复制远程主

windows系统上如何进行maven安装和配置方式

《windows系统上如何进行maven安装和配置方式》:本文主要介绍windows系统上如何进行maven安装和配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. Maven 简介2. maven的下载与安装2.1 下载 Maven2.2 Maven安装2.

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

Go语言中使用JWT进行身份验证的几种方式

《Go语言中使用JWT进行身份验证的几种方式》本文主要介绍了Go语言中使用JWT进行身份验证的几种方式,包括dgrijalva/jwt-go、golang-jwt/jwt、lestrrat-go/jw... 目录简介1. github.com/dgrijalva/jwt-go安装:使用示例:解释:2. gi

SpringBoot如何对密码等敏感信息进行脱敏处理

《SpringBoot如何对密码等敏感信息进行脱敏处理》这篇文章主要为大家详细介绍了SpringBoot对密码等敏感信息进行脱敏处理的几个常用方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录​1. 配置文件敏感信息脱敏​​2. 日志脱敏​​3. API响应脱敏​​4. 其他注意事项​​总结

python进行while遍历的常见错误解析

《python进行while遍历的常见错误解析》在Python中选择合适的遍历方式需要综合考虑可读性、性能和具体需求,本文就来和大家讲解一下python中while遍历常见错误以及所有遍历方法的优缺点... 目录一、超出数组范围问题分析错误复现解决方法关键区别二、continue使用问题分析正确写法关键点三

Python对PDF书签进行添加,修改提取和删除操作

《Python对PDF书签进行添加,修改提取和删除操作》PDF书签是PDF文件中的导航工具,通常包含一个标题和一个跳转位置,本教程将详细介绍如何使用Python对PDF文件中的书签进行操作... 目录简介使用工具python 向 PDF 添加书签添加书签添加嵌套书签Python 修改 PDF 书签Pytho

Java进行日期解析与格式化的实现代码

《Java进行日期解析与格式化的实现代码》使用Java搭配ApacheCommonsLang3和Natty库,可以实现灵活高效的日期解析与格式化,本文将通过相关示例为大家讲讲具体的实践操作,需要的可以... 目录一、背景二、依赖介绍1. Apache Commons Lang32. Natty三、核心实现代

Pandas进行周期与时间戳转换的方法

《Pandas进行周期与时间戳转换的方法》本教程将深入讲解如何在pandas中使用to_period()和to_timestamp()方法,完成时间戳与周期之间的转换,并结合实际应用场景展示这些方法的... 目录to_period() 时间戳转周期基本操作应用示例to_timestamp() 周期转时间戳基

Java使用Stream流的Lambda语法进行List转Map的操作方式

《Java使用Stream流的Lambda语法进行List转Map的操作方式》:本文主要介绍Java使用Stream流的Lambda语法进行List转Map的操作方式,具有很好的参考价值,希望对大... 目录背景Stream流的Lambda语法应用实例1、定义要操作的UserDto2、ListChina编程转成M