Linux网络编程——概念及实现双方聊天

2024-06-07 21:36

本文主要是介绍Linux网络编程——概念及实现双方聊天,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

网络编程的场景: 假设你面前有五座房子(服务器),你要走到其中一座房子的某一间,此时你站在五座房子面前很迷茫,突然,第二座房子上面有人在叫,并且用汉语(TCP/UDP)叫:“我是第二号楼(ip地址),我的房间是1102(端口号)”,那么你就得到了楼号和房间号(获取服务器ip和端口号),就可以去找那个人(连接)。那个人就回房间了,等待你的到来。

Sockt服务器和客户端的开发步骤

  1. 创建套接字socket
  2. 为套接字添加信息(IP地址和端口号)
  3. 绑定套接字socket
  4. 监听网络连接
  5. 监听到有客户端接入,接受一个连接
  6. 数据交互
  7. 关闭套接字socket,断开连接

需要用到的12个API: socket、bind、inet_aton、inet_ntoa、listen、accept、read、write、send、recv、connect、htons

socket 函数

socket 函数用于创建一个新的套接字,返回一个套接字文件描述符。

原型
#include <sys/types.h>
#include <sys/socket.h>int socket(int domain, int type, int protocol);
参数
  • domain(协议族):指定使用的地址族。常见的值包括:
    • AF_INET:IPv4协议
    • AF_INET6:IPv6协议
    • AF_UNIX:本地通信(UNIX域套接字)
  • type(套接字类型):指定套接字的类型。常见的值包括:
    • SOCK_STREAM:提供面向连接的稳定数据传输(TCP)
    • SOCK_DGRAM:提供数据报文服务(UDP)
    • SOCK_RAW:提供原始网络协议访问
  • protocol:指定使用的协议。一般情况下,传递 0 以自动选择合适的协议。
返回值

成功时返回一个新的套接字文件描述符,失败时返回 -1 并设置 errno 来指示错误类型。

示例
int sockfd;
sockfd = socket(AF_INET, SOCK_STREAM, 0);
if (sockfd == -1) {perror("socket");exit(EXIT_FAILURE);
}

bind 函数

bind 函数将套接字与特定的地址和端口绑定。对服务器来说,这一步是必不可少的,以便客户端可以通过指定的地址和端口连接到服务器。

原型
#include <sys/types.h>
#include <sys/socket.h>int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen);
参数
  • sockfd:由 socket 函数返回的套接字文件描述符。
  • addr:指向 sockaddr 结构的指针,该结构包含了需要绑定的地址和端口信息。具体类型取决于协议族,比如 struct sockaddr_in 用于 IPv4。
  • addrlenaddr 结构的大小(字节数)。
返回值

成功时返回 0,失败时返回 -1 并设置 errno 来指示错误类型。

示例
// 声明并清零‘sockaddr_in’结构
struct sockaddr_in my_addr;
memset(&my_addr, 0, sizeof(my_addr));// 设置地址族、端口号、IP地址
my_addr.sin_family = AF_INET;  // 使用IPv4地址
my_addr.sin_port = htons(8080);  // 绑定端口号 8080
my_addr.sin_addr.s_addr = INADDR_ANY;  // 绑定到所有本地地址// 绑定套接字
if (bind(sockfd, (struct sockaddr *)&my_addr, sizeof(my_addr)) == -1) {perror("bind");close(sockfd);exit(EXIT_FAILURE);
}

详细地解释一下 sockaddr 结构及其在 bind 函数中的使用:

sockaddr 是一个通用的地址结构,它可以表示多种不同类型的地址。为了方便使用特定协议族的地址,我们通常会使用具体的地址结构,并在需要时将其强制转换为 sockaddr 类型。

对于IPv4地址,我们使用 sockaddr_in 结构。以下是 sockaddr_in 的定义:

struct sockaddr_in {sa_family_t    sin_family; // 地址族 (例如 AF_INET)in_port_t      sin_port;   // 端口号 (需要使用 htons 转换为网络字节序)struct in_addr sin_addr;   // IP地址 (in_addr 结构)char           sin_zero[8]; // 填充字段, 使结构大小与 `sockaddr` 对齐
};

in_addr 结构表示一个IPv4地址,它包含一个成员:

struct in_addr {uint32_t s_addr; // IP地址 (使用 `inet_aton` 或 `INADDR_ANY` 等设置)
};

inet_atoninet_ntoa

inet_atoninet_ntoa 是两个用于处理IP地址的函数,分别用于将点分十进制的字符串格式的IP地址转换为二进制格式,以及将二进制格式的IP地址转换为点分十进制字符串格式。点分十进制(Dotted Decimal Notation)是一种表示IPv4地址的方法,将IP地址表示为四个以点(.)分隔的十进制数,每个十进制数对应一个字节(8位)。

inet_aton 函数

inet_aton 函数用于将点分十进制的字符串格式的IPv4地址转换为二进制格式,并存储在 in_addr 结构中。

原型

#include <arpa/inet.h>int inet_aton(const char *cp, struct in_addr *inp);
参数
  • cp:指向以点分十进制表示的IP地址字符串(例如 "192.168.1.1")。
  • inp:指向 in_addr 结构的指针,函数将转换后的二进制IP地址存储在此结构中。
返回值

成功时返回非零值(1),失败时返回零(0)。

示例
struct in_addr addr;
inet_aton("192.168.1.1", &addr);

inet_ntoa 函数

inet_ntoa 函数用于将 in_addr 结构中的二进制格式的IP地址转换为点分十进制的字符串格式。

原型
#include <arpa/inet.h>char *inet_ntoa(struct in_addr in);
参数
  • in:包含二进制格式IP地址的 in_addr 结构。
返回值

返回指向静态缓冲区中存储的以点分十进制表示的IP地址字符串的指针。

注意

返回的字符串存储在静态缓冲区中,因此在多线程环境中使用时需要注意线程安全问题。

示例
struct in_addr addr;
addr.s_addr = inet_addr("192.168.1.1");  // 或者使用 inet_aton
char *ip_str = inet_ntoa(addr);
printf("IP address: %s\n", ip_str);

listen 函数

listen 函数用于将套接字设置为被动模式,表示这个套接字用于接受来自客户端的连接请求。

原型
#include <sys/types.h>
#include <sys/socket.h>int listen(int sockfd, int backlog);
参数
  • sockfd:套接字文件描述符,指向一个已经绑定了地址的套接字(通过 bind 函数)。
  • backlog:连接队列的最大长度,即等待处理的连接请求的最大数量。如果有更多的连接请求到达,它们可能会被拒绝或者忽略。
返回值

成功时返回0,失败时返回-1,并设置 errno 来指示错误。

示例
int sockfd = socket(AF_INET, SOCK_STREAM, 0);
struct sockaddr_in serv_addr;// 绑定套接字到一个地址和端口
bind(sockfd, (struct sockaddr *)&serv_addr, sizeof(serv_addr));// 设置套接字为监听模式,允许最多5个待处理连接
if (listen(sockfd, 5) == -1) {perror("listen");close(sockfd);exit(EXIT_FAILURE);
}

accept 函数

accept 函数用于从监听套接字的连接队列中接受一个连接请求,并返回一个新的套接字文件描述符用于与客户端通信。

原型
#include <sys/types.h>
#include <sys/socket.h>int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen);
参数
  • sockfd:监听套接字文件描述符,通过 listen 函数设置为监听模式的套接字。
  • addr:指向 sockaddr 结构的指针,用于存储连接客户端的地址信息。可以为 NULL,表示不关心客户端地址。
  • addrlen:指向 socklen_t 类型的变量,用于存储客户端地址结构的大小。可以为 NULL,表示不关心客户端地址。
返回值

成功时返回新的套接字文件描述符,失败时返回-1,并设置 errno 来指示错误。

示例
struct sockaddr_in cli_addr;
socklen_t clilen = sizeof(cli_addr);// 从连接队列中接受一个连接请求
int newsockfd = accept(sockfd, (struct sockaddr *)&cli_addr, &clilen);
if (newsockfd == -1) {perror("accept");close(sockfd);exit(EXIT_FAILURE);
}// 现在可以使用 newsockfd 与客户端通信

在Linux网络编程中,readwrite 函数用于从套接字读取数据和向套接字写入数据。这两个函数是从Unix系统编程中继承过来的,广泛应用于文件I/O和网络I/O操作。

read 函数(从哪里读)

read 函数用于从文件描述符中读取数据。在网络编程中,文件描述符可以是一个套接字。

原型
#include <unistd.h>ssize_t read(int fd, void *buf, size_t count);
参数
  • fd:文件描述符(或套接字描述符)。
  • buf:指向存储读取数据的缓冲区。
  • count:要读取的最大字节数。
返回值
  • 成功时,返回读取的字节数。如果返回值是0,表示已到达文件末尾(对于套接字,表示对端已关闭连接)。
  • 失败时,返回-1,并设置 errno 指示错误。
示例
char buffer[256];
ssize_t n = read(sockfd, buffer, sizeof(buffer));
if (n < 0) {perror("ERROR reading from socket");
}

write 函数(写到哪里去)

write 函数用于向文件描述符中写入数据。在网络编程中,文件描述符可以是一个套接字。

原型
#include <unistd.h>ssize_t write(int fd, const void *buf, size_t count);
参数
  • fd:文件描述符(或套接字描述符)。
  • buf:指向要写入数据的缓冲区。
  • count:要写入的字节数。
返回值
  • 成功时,返回写入的字节数。
  • 失败时,返回-1,并设置 errno 指示错误。
示例
const char *message = "Hello, World!";
ssize_t n = write(sockfd, message, strlen(message));
if (n < 0) {perror("ERROR writing to socket");
}

在网络编程中,sendrecv 函数是用于在套接字上发送和接收数据的更灵活的函数。它们提供了一些额外的选项,可以更精细地控制数据传输行为。

send 函数

send 函数用于向一个连接的套接字发送数据。

原型
#include <sys/types.h>
#include <sys/socket.h>ssize_t send(int sockfd, const void *buf, size_t len, int flags);
参数
  • sockfd:要发送数据的套接字描述符。
  • buf:指向要发送数据的缓冲区。
  • len:要发送的数据长度。
  • flags:控制数据传输的标志,可以是以下标志的组合:设置为0,意味着不使用任何特殊选项
    • MSG_OOB:发送带外数据。
    • MSG_DONTROUTE:不使用路由表发送数据。
    • MSG_NOSIGNAL:在向已关闭的连接发送数据时不产生 SIGPIPE 信号。
返回值
  • 成功时,返回发送的字节数。
  • 失败时,返回-1,并设置 errno 指示错误。
示例
const char *message = "Hello, World!";
ssize_t n = send(sockfd, message, strlen(message), 0);
if (n < 0) {perror("ERROR sending to socket");
}

recv 函数

recv 函数用于从一个连接的套接字接收数据。

原型
#include <sys/types.h>
#include <sys/socket.h>ssize_t recv(int sockfd, void *buf, size_t len, int flags);
参数
  • sockfd:要接收数据的套接字描述符。
  • buf:指向接收数据的缓冲区。
  • len:接收数据的最大长度。
  • flags:控制数据接收的标志,可以是以下标志的组合:设置为0,意味着不使用任何特殊选项
    • MSG_OOB:接收带外数据。
    • MSG_PEEK:查看数据但不从输入队列中删除。
    • MSG_WAITALL:等待所有数据到达。
返回值
  • 成功时,返回接收的字节数。如果连接被关闭,返回0。
  • 失败时,返回-1,并设置 errno 指示错误。
示例
char buffer[256];
ssize_t n = recv(sockfd, buffer, sizeof(buffer), 0);
if (n < 0) {perror("ERROR receiving from socket");
}

connect 函数

在网络编程中,connect 函数是用来在客户端程序中连接服务器的。connect 函数用于将客户端的套接字连接到服务器上的套接字。

原型
#include <sys/types.h>
#include <sys/socket.h>int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen);
  • sockfd:套接字描述符。
  • addr:指向包含目标地址和端口的 struct sockaddr 结构体的指针。
  • addrlen:地址结构的大小。
返回值
  • 成功时返回 0
  • 失败时返回 -1,并设置 errno 以指示错误。
示例
int sockfd;
struct sockaddr_in serv_addr;// 创建套接字
sockfd = socket(AF_INET, SOCK_STREAM, 0);
if (sockfd < 0) {perror("ERROR opening socket");exit(1);
}// 初始化服务器地址结构
memset(&serv_addr, 0, sizeof(serv_addr));
serv_addr.sin_family = AF_INET;
serv_addr.sin_port = htons(8080);
if (inet_pton(AF_INET, "127.0.0.1", &serv_addr.sin_addr) <= 0) {perror("ERROR invalid server IP address");close(sockfd);exit(1);
}// 连接服务器
if (connect(sockfd, (struct sockaddr *)&serv_addr, sizeof(serv_addr)) < 0) {perror("ERROR connecting");close(sockfd);exit(1);
}

htons 函数

htons 函数用于将主机字节顺序转换为网络字节顺序。网络通信使用大端字节序,而主机可能使用小端字节序。因此,在设置端口号时,需要将其转换为网络字节顺序。

  • h:host(主机)
  • t:to(到)
  • n:network(网络)
  • s:short(短整数)

因此,htons 代表 "host to network short",即将主机字节顺序的短整数(16 位整数)转换为网络字节顺序。

  • Host:主机字节顺序。不同的计算机体系结构可能使用不同的字节顺序来存储数据。常见的有两种:

    • 小端序 (Little Endian):最低有效字节存储在最低地址。
    • 大端序 (Big Endian):最高有效字节存储在最低地址。
  • To:表示转换的方向。

  • Network:网络字节顺序。互联网协议采用大端序来表示数据。

  • Short:短整数,指 16 位的整数类型。这个函数专门用于处理 16 位的整数。

示例
uint16_t port = 8080;
uint16_t net_port;net_port = htons(port);
printf("Host order: %d, Network order: %d\n", port, net_port);

CTRL+Z - 暂停进程,用于将当前前台进程挂起(暂停),并将其放到后台。(还活着)

CTRL+C - 终止进程,用于强制终止当前前台进程。(死了)

下面演示的是一个服务端和2个客户端之间互相交流,服务端自动回复:

server.c

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>int main(int argc, char **argv)
{int s_fd;int c_fd;int n_read;char readBuf[128];int mark = 0;char msg[128] = {0};struct sockaddr_in s_addr;struct sockaddr_in c_addr;if(argc != 3) {printf("param is not good\n");exit(-1);}memset(&s_addr, 0, sizeof(struct sockaddr_in));memset(&c_addr, 0, sizeof(struct sockaddr_in));s_fd = socket(AF_INET, SOCK_STREAM, 0);if(s_fd == -1) {perror("socket");exit(-1);}s_addr.sin_family = AF_INET;s_addr.sin_port = htons(atoi(argv[2]));inet_aton(argv[1], &s_addr.sin_addr);bind(s_fd, (struct sockaddr *)&s_addr, sizeof(struct sockaddr_in));listen(s_fd, 10);int clen = sizeof(struct sockaddr_in);while(1) {c_fd = accept(s_fd, (struct sockaddr *)&c_addr, &clen);if(c_fd == -1) {perror("accept");}mark++;printf("get connect: %s\n", inet_ntoa(c_addr.sin_addr));if(fork() == 0) {if(fork() == 0) {while(1) {sprintf(msg, "welcom No.%d client", mark);write(c_fd, msg, strlen(msg));sleep(3);}}while(1) {memset(readBuf, 0, sizeof(readBuf));n_read = read(c_fd, readBuf, 128);if(n_read == -1) {perror("read");} else if(n_read > 0) {printf("\nget: %s\n", readBuf);} else {printf("client quit\n");break;}}break;}}return 0;
}

client.c

#include <stdio.h>
#include <sys/types.h>          /* See NOTES */
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <stdio.h>int main(int argc, char **argv)
{int c_fd;int n_read;char readBuf[128];int tmp;char msg[128] = {0};struct sockaddr_in c_addr;struct sockaddr_in f_addr;memset(&c_addr, 0, sizeof(struct sockaddr_in));if(argc != 3) {printf("param is not good\n");exit(-1);}printf("%d\n", getpid());c_fd = socket(AF_INET, SOCK_STREAM, 0);if(c_fd == -1) {perror("socket");exit(-1);}f_addr.sin_family = AF_INET;f_addr.sin_port = htons(atoi(argv[2]));inet_aton(argv[1], &f_addr.sin_addr);if(connect(c_fd, (struct sockaddr *)&f_addr, sizeof(struct sockaddr)) == -1) {perror("connect");exit(-1);}while(1) {if(fork() == 0) {while(1) {memset(msg, 0, sizeof(msg));printf("input: ");fgets(msg, sizeof(msg), stdin);write(c_fd, msg, strlen(msg));}}while(1) {memset(readBuf, 0, sizeof(readBuf));n_read = read(c_fd, readBuf, 128);if(n_read == -1) {perror("read");exit(-1);}else{printf("\nget:%s\n", readBuf);}}}return 0;
}

运行结果:下面是同一台虚拟机,再下面是虚拟机和手机。 

 

这篇关于Linux网络编程——概念及实现双方聊天的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1040362

相关文章

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,

SpringBoot中使用Flux实现流式返回的方法小结

《SpringBoot中使用Flux实现流式返回的方法小结》文章介绍流式返回(StreamingResponse)在SpringBoot中通过Flux实现,优势包括提升用户体验、降低内存消耗、支持长连... 目录背景流式返回的核心概念与优势1. 提升用户体验2. 降低内存消耗3. 支持长连接与实时通信在Sp

Conda虚拟环境的复制和迁移的四种方法实现

《Conda虚拟环境的复制和迁移的四种方法实现》本文主要介绍了Conda虚拟环境的复制和迁移的四种方法实现,包括requirements.txt,environment.yml,conda-pack,... 目录在本机复制Conda虚拟环境相同操作系统之间复制环境方法一:requirements.txt方法

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

springboot下载接口限速功能实现

《springboot下载接口限速功能实现》通过Redis统计并发数动态调整每个用户带宽,核心逻辑为每秒读取并发送限定数据量,防止单用户占用过多资源,确保整体下载均衡且高效,本文给大家介绍spring... 目录 一、整体目标 二、涉及的主要类/方法✅ 三、核心流程图解(简化) 四、关键代码详解1️⃣ 设置

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

Nginx 配置跨域的实现及常见问题解决

《Nginx配置跨域的实现及常见问题解决》本文主要介绍了Nginx配置跨域的实现及常见问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来... 目录1. 跨域1.1 同源策略1.2 跨域资源共享(CORS)2. Nginx 配置跨域的场景2.1

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3