Pyramid Vision Transformer, PVT(ICCV 2021)原理与代码解读

2024-06-07 21:12

本文主要是介绍Pyramid Vision Transformer, PVT(ICCV 2021)原理与代码解读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

paper:Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions

official implementation:GitHub - whai362/PVT: Official implementation of PVT series

存在的问题

现有的 Vision Transformer (ViT) 主要设计用于图像分类任务,难以直接用于像素级密集预测任务,如目标检测和分割。这是因为存在以下问题

  1. 低分辨率输出:传统的Vision Transformer(ViT)在处理密集预测任务(如目标检测和语义分割)时,输出分辨率较低,难以获得高质量的像素级别预测。
  2. 高计算和内存开销:ViT在处理大尺寸输入图像时,计算和内存开销较高,限制了其在实际应用中的效率。

本文的创新点

为了解决上述问题,作者提出了 Pyramid Vision Transformer (PVT), PVT结合了卷积神经网络的金字塔结构和Transformer的全局感受野,旨在克服传统Transformer在处理密集预测任务时遇到的分辨率低、计算和内存开销大的问题。它可以作为 CNN 骨干网络的替代品,用于多种下游任务,包括图像级预测和像素级密集预测。具体包括:

  1. 金字塔结构:PVT引入了金字塔结构,可以生成多尺度的特征图,这对于密集预测任务是有益的。
  2. 空间缩减注意力层(SRA):为了处理高分辨率特征图并减少计算/内存成本,作者设计了 SRA 层来替代传统的多头注意力 (MHA) 层。
  3. 纯Transformer骨干:PVT 是一个没有卷积的纯 Transformer 骨干网络,可以用于各种像素级密集预测任务,并与 DETR 结合构建了一个完全无需卷积的目标检测系统。

实际效果

  • PVT 在多个下游任务上进行了广泛的实验验证,包括图像分类、目标检测、实例和语义分割等,并与流行的 ResNets 和 ResNeXts 进行了比较。
  • 实验结果表明,在参数数量相当的情况下,PVT 在 COCO 数据集上使用 RetinaNet 作为检测器时,PVT-Small 模型达到了 40.4 的 AP(平均精度),超过了 ResNet50+RetinaNet(36.3 AP)4.1 个百分点。
  • PVT-Large 模型达到了 42.6 的 AP,比 ResNeXt101-64x4d 高出 1.6 个百分点,同时参数数量减少了 30%。
  • 这些结果表明 PVT 可以作为 CNN 骨干网络的一个有效的替代,用于像素级预测,并推动未来的研究。

方法介绍

Overall Architecture

PVT的整体结构如图3所示

和CNN backbone类似,PVT也有四个stage来生成不同尺度的特征图。所有stage都有一个相似的架构,包括一个patch embedding层和 \(L_i\) 个Transformer encoder层。

在第一个stage,给定大小为 \(H\times W\times 3\) 的输入图片,我们首先将其划分为 \(\frac{HW}{4^2}\) 个patch,每个大小为4x4x3。然后将展平的patch送入一个线性映射层得到大小为 \(\frac{HW}{4^2}\times C_1\) 的输出。然后将输出和位置编码一起进入有 \(L_1\) 层的Transformer encoder,得到的输出reshape成大小为 \(\frac{H}{4}\times \frac{W}{4}\times C_1\) 的特征图 \(F_1\)。同样的方式,以前一个stage的输出特征图作为输入,我们得到特征图 \(F_2,F_3,F_4\),相对于原始输入图片的步长分别为8,16,32。用了特征图金字塔 \(\{F_1,F_2,F_3,F_4\}\),我们的方法可以很容易地应用于大多数下游任务,包括图像分类、目标检测和语义分割。

Feature Pyramid for Transformer

和CNN backbone用不同stride的卷积来得到不同尺度特征图不同,PVT使用一个渐进式shrinking策略,通过patch embedding层来控制特征图的尺度。 

我们用 \(P_i\) 来表示第 \(i\) 个stage的patch size,在stage \(i\) 的开始,我们首先将输入特征图 \(F_{i-1}\in \mathbb{R}^{H_{i-1}\times W_{i-1}\times C_{i-1}}\) 均匀地划分成 \(\frac{H_{i-1}W_{i-1}}{P_i^2}\) 个patch,然后将每个patch展平并映射得到一个 \(C_i\) 维的embedding。在线性映射后,embedded patch的大小为 \(\frac{H_{i-1}}{P_i}\times \frac{W_{i-1}}{P_i}\times C_i\),其中宽高比输入小了 \(P_i\) 倍。

这样,我们就可以在每个stage灵活地调整特征图的尺度,从而将Transformer构建成金字塔结构。

Transforme Encoder

由于PVT需要处理高分辨率(stride-4)的特征图,我们提出了一种spatial-reduction attention(SRA)来替换encoder中传统的multi-head attention(MHA)。

和MHA类似,SRA的输入包括一个query \(Q\),一个key \(K\),一个value \(V\)。不同的是SRA在attention operation之前减小了 \(K\) 和 \(V\) 的大小,如图4所示,这大大减少了计算和内存的开销。

stage \(i\) 的SRA如下

其中 \(Concat(\cdot)\) 是拼接操作。\(W^{Q}_j\in \mathbb{R}^{C_i\times d_{head}},W^{K}_j\in \mathbb{R}^{C_i\times d_{head}},W^{V}_j\in \mathbb{R}^{C_i\times d_{head}},W^O\in \mathbb{R}^{C_i\times C_i}\) 是线性映射参数。\(N_i\) 是stage \(i\) 中attention层的head数量,所以每个head的维度(即\(d_{head}\))等于 \(\frac{C_i}{N_i}\)。\(SR(\cdot)\) 是降低输入序列(即 \(K\) 或 \(V\))空间维度的操作,如下:

其中 \(\mathbf{x}\in\mathbb{R}^{(H_iW_i)\times C_i}\) 表示一个输入序列,\(R_i\) 表示stage \(i\) 中attention层的reduction ratio。\(Reshape(\mathbf{x},R_i)\) 是将输入序列 \(\mathbf{x}\) reshape成大小为 \(\frac{H_iW_i}{R^2_i}\times (R^2_iC_i)\) 的序列的操作。\(W_S\in \mathbb{R}^{(R^2_iC_i)\times C_i}\) 是一个linear projection,它将输入序列的维度降低到 \(C_i\)。\(Norm(\cdot)\) 是layer normalization。和原始的Transformer一样,attention operation按下式计算

通过上述公式我们可以发现,MSA的计算/内存开销是MHA的 \(\frac{1}{R^2}\),因此MSA可以在有限的资源下处理更大的输入特征图或序列。

代码解析

见PVT v2的代码解析 PVT v2 原理与代码解析-CSDN博客

实验结果 

模型涉及到的一些超参总结如下:

  • \(P_i\):stage \(i\) 的patch size
  • \(C_i\):stage \(i\) 的输出通道数
  • \(L_i\):stage \(i\) 中的encoder层数
  • \(R_i\):stage \(i\) 中SRA的reduction ratio
  • \(N_i\):stage \(i\) 中SRA的head数量
  • \(E_i\):stage \(i\) 中FFN层的expansion ratio

作者设计了一系列的PVT模型,具体配置如表1

和其它SOTA模型在ImageNet的结果对比如表2所示

用RetinaNet上和其它backbone的结果对比如表3所示,可以看到PVT不同大小的模型与ResNet系列相比,参数更少精度更高。

在语义分割模型Semantic FPN上PVT也超越了对应的ResNet

这篇关于Pyramid Vision Transformer, PVT(ICCV 2021)原理与代码解读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1040315

相关文章

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

MySQL的配置文件详解及实例代码

《MySQL的配置文件详解及实例代码》MySQL的配置文件是服务器运行的重要组成部分,用于设置服务器操作的各种参数,下面:本文主要介绍MySQL配置文件的相关资料,文中通过代码介绍的非常详细,需要... 目录前言一、配置文件结构1.[mysqld]2.[client]3.[mysql]4.[mysqldum

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引