C++向上转换

2024-06-07 19:48
文章标签 c++ 转换 向上

本文主要是介绍C++向上转换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在 C/C++ 中经常会发生数据类型的转换,例如将 int 类型的数据赋值给 float 类型的变量时,编译器会先把 int 类型的数据转换为 float 类型再赋值;反过来,float 类型的数据在经过类型转换后也可以赋值给 int 类型的变量。

数据类型转换的前提是,编译器知道如何对数据进行取舍。例如:
  1. int a = 10.9;
  2. printf("%d\n", a);
输出结果为 10,编译器会将小数部分直接丢掉(不是四舍五入)。再如:
  1. float b = 10;
  2. printf("%f\n", b);
输出结果为 10.000000,编译器会自动添加小数部分。

类其实也是一种数据类型,也可以发生数据类型转换,不过这种转换只有在基类和派生类之间才有意义,并且只能将派生类赋值给基类,包括将派生类对象赋值给基类对象、将派生类指针赋值给基类指针、将派生类引用赋值给基类引用,这在 C++ 中称为向上转型( Upcasting )。相应地,将基类赋值给派生类称为向下转型( Downcasting )。

向上转型非常安全,可以由编译器自动完成;向下转型有风险,需要程序员手动干预。本节只介绍向上转型,向下转型将在后续章节介绍。
向上转型和向下转型是面向对象编程的一种通用概念,它们也存在于 Java、C# 等编程语言中。

将派生类对象赋值给基类对象

下面的例子演示了如何将派生类对象赋值给基类对象:
  1. #include <iostream>
  2. using namespace std;
  3. //基类
  4. class A{
  5. public:
  6. A(int a);
  7. public:
  8. void display();
  9. public:
  10. int m_a;
  11. };
  12. A::A(int a): m_a(a){ }
  13. void A::display(){
  14. cout<<"Class A: m_a="<<m_a<<endl;
  15. }
  16. //派生类
  17. class B: public A{
  18. public:
  19. B(int a, int b);
  20. public:
  21. void display();
  22. public:
  23. int m_b;
  24. };
  25. B::B(int a, int b): A(a), m_b(b){ }
  26. void B::display(){
  27. cout<<"Class B: m_a="<<m_a<<", m_b="<<m_b<<endl;
  28. }
  29. int main(){
  30. A a(10);
  31. B b(66, 99);
  32. //赋值前
  33. a.display();
  34. b.display();
  35. cout<<"--------------"<<endl;
  36. //赋值后
  37. a = b;
  38. a.display();
  39. b.display();
  40. return 0;
  41. }
运行结果:
Class A: m_a=10
Class B: m_a=66, m_b=99
----------------------------
Class A: m_a=66
Class B: m_a=66, m_b=99

本例中 A 是基类, B 是派生类,a、b 分别是它们的对象,由于派生类 B 包含了从基类 A 继承来的成员,因此可以将派生类对象 b 赋值给基类对象 a。通过运行结果也可以发现,赋值后 a 所包含的成员变量的值已经发生了变化。

赋值的本质是将现有的数据写入已分配好的内存中,对象的内存只包含了成员变量,所以对象之间的赋值是成员变量的赋值,成员函数不存在赋值问题。 运行结果也有力地证明了这一点,虽然有 a=b; 这样的赋值过程,但是 a.display() 始终调用的都是 A 类的 display() 函数。换句话说,对象之间的赋值不会影响成员函数,也不会影响 this 指针。

将派生类对象赋值给基类对象时,会舍弃派生类新增的成员,也就是“大材小用”,如下图所示:

可以发现,即使将派生类对象赋值给基类对象,基类对象也不会包含派生类的成员,所以依然不同通过基类对象来访问派生类的成员。对于上面的例子,a.m_a 是正确的,但 a.m_b 就是错误的,因为 a 不包含成员 m_b。

这种转换关系是不可逆的,只能用派生类对象给基类对象赋值,而不能用基类对象给派生类对象赋值。 理由很简单,基类不包含派生类的成员变量,无法对派生类的成员变量赋值。同理,同一基类的不同派生类对象之间也不能赋值。

要理解这个问题,还得从赋值的本质入手。赋值实际上是向内存填充数据,当数据较多时很好处理,舍弃即可;本例中将 b 赋值给 a 时(执行 a=b; 语句),成员 m_b 是多余的,会被直接丢掉,所以不会发生赋值错误。但当数据较少时,问题就很棘手,编译器不知道如何填充剩下的内存;如果本例中有 b= a; 这样的语句,编译器就不知道该如何给变量 m_b 赋值,所以会发生错误。

将派生类指针赋值给基类指针

除了可以将派生类对象赋值给基类对象(对象变量之间的赋值),还可以将派生类指针赋值给基类指针(对象指针之间的赋值)。我们先来看一个多继承的例子,继承关系为:

下面的代码实现了这种继承关系:
  1. #include <iostream>
  2. using namespace std;
  3. //基类A
  4. class A{
  5. public:
  6. A(int a);
  7. public:
  8. void display();
  9. protected:
  10. int m_a;
  11. };
  12. A::A(int a): m_a(a){ }
  13. void A::display(){
  14. cout<<"Class A: m_a="<<m_a<<endl;
  15. }
  16. //中间派生类B
  17. class B: public A{
  18. public:
  19. B(int a, int b);
  20. public:
  21. void display();
  22. protected:
  23. int m_b;
  24. };
  25. B::B(int a, int b): A(a), m_b(b){ }
  26. void B::display(){
  27. cout<<"Class B: m_a="<<m_a<<", m_b="<<m_b<<endl;
  28. }
  29. //基类C
  30. class C{
  31. public:
  32. C(int c);
  33. public:
  34. void display();
  35. protected:
  36. int m_c;
  37. };
  38. C::C(int c): m_c(c){ }
  39. void C::display(){
  40. cout<<"Class C: m_c="<<m_c<<endl;
  41. }
  42. //最终派生类D
  43. class D: public B, public C{
  44. public:
  45. D(int a, int b, int c, int d);
  46. public:
  47. void display();
  48. private:
  49. int m_d;
  50. };
  51. D::D(int a, int b, int c, int d): B(a, b), C(c), m_d(d){ }
  52. void D::display(){
  53. cout<<"Class D: m_a="<<m_a<<", m_b="<<m_b<<", m_c="<<m_c<<", m_d="<<m_d<<endl;
  54. }
  55. int main(){
  56. A *pa = new A(1);
  57. B *pb = new B(2, 20);
  58. C *pc = new C(3);
  59. D *pd = new D(4, 40, 400, 4000);
  60. pa = pd;
  61. pa -> display();
  62. pb = pd;
  63. pb -> display();
  64. pc = pd;
  65. pc -> display();
  66. cout<<"-----------------------"<<endl;
  67. cout<<"pa="<<pa<<endl;
  68. cout<<"pb="<<pb<<endl;
  69. cout<<"pc="<<pc<<endl;
  70. cout<<"pd="<<pd<<endl;
  71. return 0;
  72. }
运行结果:
Class A: m_a=4
Class B: m_a=4, m_b=40
Class C: m_c=400
-----------------------
pa=0x9b17f8
pb=0x9b17f8
pc=0x9b1800
pd=0x9b17f8

本例中定义了多个对象指针,并尝试将派生类指针赋值给基类指针。与对象变量之间的赋值不同的是,对象指针之间的赋值并没有拷贝对象的成员,也没有修改对象本身的数据,仅仅是改变了指针的指向。
1) 通过基类指针访问派生类的成员
请读者先关注第 68 行代码,我们将派生类指针 pd 赋值给了基类指针 pa,从运行结果可以看出,调用 display() 函数时虽然使用了派生类的成员变量,但是 display() 函数本身却是基类的。也就是说,将派生类指针赋值给基类指针时,通过基类指针只能使用派生类的成员变量,但不能使用派生类的成员函数,这看起来有点不伦不类,究竟是为什么呢?第 71、74 行代码也是类似的情况。

pa 本来是基类 A 的指针,现在指向了派生类 D 的对象,这使得隐式指针 this 发生了变化,也指向了 D 类的对象,所以最终在 display() 内部使用的是 D 类对象的成员变量,相信这一点不难理解。

编译器虽然通过指针的指向来访问成员变量,但是却不通过指针的指向来访问成员函数:编译器通过指针的类型来访问成员函数。对于 pa,它的类型是 A,不管它指向哪个对象,使用的都是 A 类的成员函数,具体原因已在《 C++函数编译原理和成员函数的实现 》中做了详细讲解。

概括起来说就是:编译器通过指针来访问成员变量,指针指向哪个对象就使用哪个对象的数据;编译器通过指针的类型来访问成员函数,指针属于哪个类的类型就使用哪个类的函数。
2) 赋值后值不一致的情况
本例中我们将最终派生类的指针 pd 分别赋值给了基类指针 pa、pb、pc,按理说它们的值应该相等,都指向同一块内存,但是运行结果却有力地反驳了这种推论,只有 pa、pb、pd 三个指针的值相等,pc 的值比它们都大。也就是说,执行 pc = pd; 语句后,pc 和 pd 的值并不相等。

这非常出乎我们的意料,按照我们通常的理解,赋值就是将一个变量的值交给另外一个变量,不会出现不相等的情况,究竟是什么导致了 pc 和 pd 不相等呢?我们将在《 派生类给基类赋值时到底发生了什么 》一节中解开谜底。

将派生类引用赋值给基类引用

引用在本质上是通过指针的方式实现的,这一点已在《 引用在本质上是什么,它和指针到底有什么区别 》中进行了讲解,既然基类的指针可以指向派生类的对象,那么我们就有理由推断:基类的引用也可以指向派生类的对象,并且它的表现和指针是类似的。

修改上例中 main() 函数内部的代码,用引用取代指针:
  1. int main(){
  2. D d(4, 40, 400, 4000);
  3. A &ra = d;
  4. B &rb = d;
  5. C &rc = d;
  6. ra.display();
  7. rb.display();
  8. rc.display();
  9. return 0;
  10. }
运行结果:
Class A: m_a=4
Class B: m_a=4, m_b=40
Class C: m_c=400

ra、rb、rc 是基类的引用,它们都引用了派生类对象 d,并调用了 display() 函数,从运行结果可以发现,虽然使用了派生类对象的成员变量,但是却没有使用派生类的成员函数,这和指针的表现是一样的。

引用和指针的表现之所以如此类似,是因为引用和指针并没有本质上的区别,引用仅仅是对指针进行了简单封装,读者可以猛击《 引用在本质上是什么,它和指针到底有什么区别 》一文深入了解。

最后需要注意的是,向上转型后通过基类的对象、指针、引用只能访问从基类继承过去的成员(包括成员变量和成员函数),不能访问派生类新增的成员。

这篇关于C++向上转换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1040127

相关文章

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

C++中detach的作用、使用场景及注意事项

《C++中detach的作用、使用场景及注意事项》关于C++中的detach,它主要涉及多线程编程中的线程管理,理解detach的作用、使用场景以及注意事项,对于写出高效、安全的多线程程序至关重要,下... 目录一、什么是join()?它的作用是什么?类比一下:二、join()的作用总结三、join()怎么

Kotlin Map映射转换问题小结

《KotlinMap映射转换问题小结》文章介绍了Kotlin集合转换的多种方法,包括map(一对一转换)、mapIndexed(带索引)、mapNotNull(过滤null)、mapKeys/map... 目录Kotlin 集合转换:map、mapIndexed、mapNotNull、mapKeys、map

C++中全局变量和局部变量的区别

《C++中全局变量和局部变量的区别》本文主要介绍了C++中全局变量和局部变量的区别,全局变量和局部变量在作用域和生命周期上有显著的区别,下面就来介绍一下,感兴趣的可以了解一下... 目录一、全局变量定义生命周期存储位置代码示例输出二、局部变量定义生命周期存储位置代码示例输出三、全局变量和局部变量的区别作用域

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

C++中NULL与nullptr的区别小结

《C++中NULL与nullptr的区别小结》本文介绍了C++编程中NULL与nullptr的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编... 目录C++98空值——NULLC++11空值——nullptr区别对比示例 C++98空值——NUL

C++ Log4cpp跨平台日志库的使用小结

《C++Log4cpp跨平台日志库的使用小结》Log4cpp是c++类库,本文详细介绍了C++日志库log4cpp的使用方法,及设置日志输出格式和优先级,具有一定的参考价值,感兴趣的可以了解一下... 目录一、介绍1. log4cpp的日志方式2.设置日志输出的格式3. 设置日志的输出优先级二、Window