C++向上转换

2024-06-07 19:48
文章标签 c++ 转换 向上

本文主要是介绍C++向上转换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在 C/C++ 中经常会发生数据类型的转换,例如将 int 类型的数据赋值给 float 类型的变量时,编译器会先把 int 类型的数据转换为 float 类型再赋值;反过来,float 类型的数据在经过类型转换后也可以赋值给 int 类型的变量。

数据类型转换的前提是,编译器知道如何对数据进行取舍。例如:
  1. int a = 10.9;
  2. printf("%d\n", a);
输出结果为 10,编译器会将小数部分直接丢掉(不是四舍五入)。再如:
  1. float b = 10;
  2. printf("%f\n", b);
输出结果为 10.000000,编译器会自动添加小数部分。

类其实也是一种数据类型,也可以发生数据类型转换,不过这种转换只有在基类和派生类之间才有意义,并且只能将派生类赋值给基类,包括将派生类对象赋值给基类对象、将派生类指针赋值给基类指针、将派生类引用赋值给基类引用,这在 C++ 中称为向上转型( Upcasting )。相应地,将基类赋值给派生类称为向下转型( Downcasting )。

向上转型非常安全,可以由编译器自动完成;向下转型有风险,需要程序员手动干预。本节只介绍向上转型,向下转型将在后续章节介绍。
向上转型和向下转型是面向对象编程的一种通用概念,它们也存在于 Java、C# 等编程语言中。

将派生类对象赋值给基类对象

下面的例子演示了如何将派生类对象赋值给基类对象:
  1. #include <iostream>
  2. using namespace std;
  3. //基类
  4. class A{
  5. public:
  6. A(int a);
  7. public:
  8. void display();
  9. public:
  10. int m_a;
  11. };
  12. A::A(int a): m_a(a){ }
  13. void A::display(){
  14. cout<<"Class A: m_a="<<m_a<<endl;
  15. }
  16. //派生类
  17. class B: public A{
  18. public:
  19. B(int a, int b);
  20. public:
  21. void display();
  22. public:
  23. int m_b;
  24. };
  25. B::B(int a, int b): A(a), m_b(b){ }
  26. void B::display(){
  27. cout<<"Class B: m_a="<<m_a<<", m_b="<<m_b<<endl;
  28. }
  29. int main(){
  30. A a(10);
  31. B b(66, 99);
  32. //赋值前
  33. a.display();
  34. b.display();
  35. cout<<"--------------"<<endl;
  36. //赋值后
  37. a = b;
  38. a.display();
  39. b.display();
  40. return 0;
  41. }
运行结果:
Class A: m_a=10
Class B: m_a=66, m_b=99
----------------------------
Class A: m_a=66
Class B: m_a=66, m_b=99

本例中 A 是基类, B 是派生类,a、b 分别是它们的对象,由于派生类 B 包含了从基类 A 继承来的成员,因此可以将派生类对象 b 赋值给基类对象 a。通过运行结果也可以发现,赋值后 a 所包含的成员变量的值已经发生了变化。

赋值的本质是将现有的数据写入已分配好的内存中,对象的内存只包含了成员变量,所以对象之间的赋值是成员变量的赋值,成员函数不存在赋值问题。 运行结果也有力地证明了这一点,虽然有 a=b; 这样的赋值过程,但是 a.display() 始终调用的都是 A 类的 display() 函数。换句话说,对象之间的赋值不会影响成员函数,也不会影响 this 指针。

将派生类对象赋值给基类对象时,会舍弃派生类新增的成员,也就是“大材小用”,如下图所示:

可以发现,即使将派生类对象赋值给基类对象,基类对象也不会包含派生类的成员,所以依然不同通过基类对象来访问派生类的成员。对于上面的例子,a.m_a 是正确的,但 a.m_b 就是错误的,因为 a 不包含成员 m_b。

这种转换关系是不可逆的,只能用派生类对象给基类对象赋值,而不能用基类对象给派生类对象赋值。 理由很简单,基类不包含派生类的成员变量,无法对派生类的成员变量赋值。同理,同一基类的不同派生类对象之间也不能赋值。

要理解这个问题,还得从赋值的本质入手。赋值实际上是向内存填充数据,当数据较多时很好处理,舍弃即可;本例中将 b 赋值给 a 时(执行 a=b; 语句),成员 m_b 是多余的,会被直接丢掉,所以不会发生赋值错误。但当数据较少时,问题就很棘手,编译器不知道如何填充剩下的内存;如果本例中有 b= a; 这样的语句,编译器就不知道该如何给变量 m_b 赋值,所以会发生错误。

将派生类指针赋值给基类指针

除了可以将派生类对象赋值给基类对象(对象变量之间的赋值),还可以将派生类指针赋值给基类指针(对象指针之间的赋值)。我们先来看一个多继承的例子,继承关系为:

下面的代码实现了这种继承关系:
  1. #include <iostream>
  2. using namespace std;
  3. //基类A
  4. class A{
  5. public:
  6. A(int a);
  7. public:
  8. void display();
  9. protected:
  10. int m_a;
  11. };
  12. A::A(int a): m_a(a){ }
  13. void A::display(){
  14. cout<<"Class A: m_a="<<m_a<<endl;
  15. }
  16. //中间派生类B
  17. class B: public A{
  18. public:
  19. B(int a, int b);
  20. public:
  21. void display();
  22. protected:
  23. int m_b;
  24. };
  25. B::B(int a, int b): A(a), m_b(b){ }
  26. void B::display(){
  27. cout<<"Class B: m_a="<<m_a<<", m_b="<<m_b<<endl;
  28. }
  29. //基类C
  30. class C{
  31. public:
  32. C(int c);
  33. public:
  34. void display();
  35. protected:
  36. int m_c;
  37. };
  38. C::C(int c): m_c(c){ }
  39. void C::display(){
  40. cout<<"Class C: m_c="<<m_c<<endl;
  41. }
  42. //最终派生类D
  43. class D: public B, public C{
  44. public:
  45. D(int a, int b, int c, int d);
  46. public:
  47. void display();
  48. private:
  49. int m_d;
  50. };
  51. D::D(int a, int b, int c, int d): B(a, b), C(c), m_d(d){ }
  52. void D::display(){
  53. cout<<"Class D: m_a="<<m_a<<", m_b="<<m_b<<", m_c="<<m_c<<", m_d="<<m_d<<endl;
  54. }
  55. int main(){
  56. A *pa = new A(1);
  57. B *pb = new B(2, 20);
  58. C *pc = new C(3);
  59. D *pd = new D(4, 40, 400, 4000);
  60. pa = pd;
  61. pa -> display();
  62. pb = pd;
  63. pb -> display();
  64. pc = pd;
  65. pc -> display();
  66. cout<<"-----------------------"<<endl;
  67. cout<<"pa="<<pa<<endl;
  68. cout<<"pb="<<pb<<endl;
  69. cout<<"pc="<<pc<<endl;
  70. cout<<"pd="<<pd<<endl;
  71. return 0;
  72. }
运行结果:
Class A: m_a=4
Class B: m_a=4, m_b=40
Class C: m_c=400
-----------------------
pa=0x9b17f8
pb=0x9b17f8
pc=0x9b1800
pd=0x9b17f8

本例中定义了多个对象指针,并尝试将派生类指针赋值给基类指针。与对象变量之间的赋值不同的是,对象指针之间的赋值并没有拷贝对象的成员,也没有修改对象本身的数据,仅仅是改变了指针的指向。
1) 通过基类指针访问派生类的成员
请读者先关注第 68 行代码,我们将派生类指针 pd 赋值给了基类指针 pa,从运行结果可以看出,调用 display() 函数时虽然使用了派生类的成员变量,但是 display() 函数本身却是基类的。也就是说,将派生类指针赋值给基类指针时,通过基类指针只能使用派生类的成员变量,但不能使用派生类的成员函数,这看起来有点不伦不类,究竟是为什么呢?第 71、74 行代码也是类似的情况。

pa 本来是基类 A 的指针,现在指向了派生类 D 的对象,这使得隐式指针 this 发生了变化,也指向了 D 类的对象,所以最终在 display() 内部使用的是 D 类对象的成员变量,相信这一点不难理解。

编译器虽然通过指针的指向来访问成员变量,但是却不通过指针的指向来访问成员函数:编译器通过指针的类型来访问成员函数。对于 pa,它的类型是 A,不管它指向哪个对象,使用的都是 A 类的成员函数,具体原因已在《 C++函数编译原理和成员函数的实现 》中做了详细讲解。

概括起来说就是:编译器通过指针来访问成员变量,指针指向哪个对象就使用哪个对象的数据;编译器通过指针的类型来访问成员函数,指针属于哪个类的类型就使用哪个类的函数。
2) 赋值后值不一致的情况
本例中我们将最终派生类的指针 pd 分别赋值给了基类指针 pa、pb、pc,按理说它们的值应该相等,都指向同一块内存,但是运行结果却有力地反驳了这种推论,只有 pa、pb、pd 三个指针的值相等,pc 的值比它们都大。也就是说,执行 pc = pd; 语句后,pc 和 pd 的值并不相等。

这非常出乎我们的意料,按照我们通常的理解,赋值就是将一个变量的值交给另外一个变量,不会出现不相等的情况,究竟是什么导致了 pc 和 pd 不相等呢?我们将在《 派生类给基类赋值时到底发生了什么 》一节中解开谜底。

将派生类引用赋值给基类引用

引用在本质上是通过指针的方式实现的,这一点已在《 引用在本质上是什么,它和指针到底有什么区别 》中进行了讲解,既然基类的指针可以指向派生类的对象,那么我们就有理由推断:基类的引用也可以指向派生类的对象,并且它的表现和指针是类似的。

修改上例中 main() 函数内部的代码,用引用取代指针:
  1. int main(){
  2. D d(4, 40, 400, 4000);
  3. A &ra = d;
  4. B &rb = d;
  5. C &rc = d;
  6. ra.display();
  7. rb.display();
  8. rc.display();
  9. return 0;
  10. }
运行结果:
Class A: m_a=4
Class B: m_a=4, m_b=40
Class C: m_c=400

ra、rb、rc 是基类的引用,它们都引用了派生类对象 d,并调用了 display() 函数,从运行结果可以发现,虽然使用了派生类对象的成员变量,但是却没有使用派生类的成员函数,这和指针的表现是一样的。

引用和指针的表现之所以如此类似,是因为引用和指针并没有本质上的区别,引用仅仅是对指针进行了简单封装,读者可以猛击《 引用在本质上是什么,它和指针到底有什么区别 》一文深入了解。

最后需要注意的是,向上转型后通过基类的对象、指针、引用只能访问从基类继承过去的成员(包括成员变量和成员函数),不能访问派生类新增的成员。

这篇关于C++向上转换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1040127

相关文章

Java controller接口出入参时间序列化转换操作方法(两种)

《Javacontroller接口出入参时间序列化转换操作方法(两种)》:本文主要介绍Javacontroller接口出入参时间序列化转换操作方法,本文给大家列举两种简单方法,感兴趣的朋友一起看... 目录方式一、使用注解方式二、统一配置场景:在controller编写的接口,在前后端交互过程中一般都会涉及

C#如何调用C++库

《C#如何调用C++库》:本文主要介绍C#如何调用C++库方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录方法一:使用P/Invoke1. 导出C++函数2. 定义P/Invoke签名3. 调用C++函数方法二:使用C++/CLI作为桥接1. 创建C++/CL

Java对象转换的实现方式汇总

《Java对象转换的实现方式汇总》:本文主要介绍Java对象转换的多种实现方式,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java对象转换的多种实现方式1. 手动映射(Manual Mapping)2. Builder模式3. 工具类辅助映

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

Linux下如何使用C++获取硬件信息

《Linux下如何使用C++获取硬件信息》这篇文章主要为大家详细介绍了如何使用C++实现获取CPU,主板,磁盘,BIOS信息等硬件信息,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录方法获取CPU信息:读取"/proc/cpuinfo"文件获取磁盘信息:读取"/proc/diskstats"文

C#实现将Excel表格转换为图片(JPG/ PNG)

《C#实现将Excel表格转换为图片(JPG/PNG)》Excel表格可能会因为不同设备或字体缺失等问题,导致格式错乱或数据显示异常,转换为图片后,能确保数据的排版等保持一致,下面我们看看如何使用C... 目录通过C# 转换Excel工作表到图片通过C# 转换指定单元格区域到图片知识扩展C# 将 Excel

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a

使用Python开发一个带EPUB转换功能的Markdown编辑器

《使用Python开发一个带EPUB转换功能的Markdown编辑器》Markdown因其简单易用和强大的格式支持,成为了写作者、开发者及内容创作者的首选格式,本文将通过Python开发一个Markd... 目录应用概览代码结构与核心组件1. 初始化与布局 (__init__)2. 工具栏 (setup_t