LangChain开发【NL2SQL】应用

2024-06-07 17:28
文章标签 应用 开发 langchain nl2sql

本文主要是介绍LangChain开发【NL2SQL】应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

关于LangGraph的简单介绍,请参考这篇博客:

LangGraph开发Agent智能体应用【基础聊天机器人】-CSDN博客

对比LangChain实现NL2SQL

关于用LangChain开发NL2SQL的Agent应用,在这篇博客提供了完整的代码实现:

LangChain开发LLM应用【入门指南】_langchain 开发社区-CSDN博客

我在这里赘述一下:

from sqlalchemy import create_engine
from langchain_community.utilities import SQLDatabase# 数据库连接信息
username = 'root'
password = 'MyNewPass1!'
host = 'desk04v.mlprod.bjpdc.qihoo.net'
port = '3306'
database = 'test'engine = create_engine(f'mysql+mysqlconnector://{username}:{password}@{host}:{port}/{database}')
db = SQLDatabase(engine)
result = db.run("select * FROM courses LIMIT 5;")
print(result)from langchain_community.agent_toolkits import create_sql_agent
from langchain_openai import ChatOpenAIllm = ChatOpenAI(model="gpt-4o", temperature=0)
agent_executor = create_sql_agent(llm, db=db, agent_type="openai-tools", verbose=True)agent_executor.invoke("找到学分最高的课程"
)

效果如下:

我并没有在代码中定义执行链,只是给LLM提供了一个工具集,让Agent自行决定如何使用。

可以看到,Agent,先查了一下数据库中有哪些表,找到看上去有用的表后,再查了一下表结构以及预览数据,再生成sql执行(先校验一遍再执行),最后整合结果告诉我结论。

可以说已经是非常智能了。

LangGraph实现实现NL2SQL

LangGraph的方式,就和LangChain不一样了,它的开发方式就是不断给图添加“节点”和“线”,组成一个工作流。

注意:这里的工作流,并不是简单理解的操作流,LangGraph的工作流和LangChain的工作流不是是一个层面的东西,相信你看完这个例子就能感受到了。

还是先上代码!!!

第一步:定义工具集合

LangChain 和 LangGraph是打通的(准确的说,LangGraph是LangChain生态的高级框架)

所以我们可以直接使用LangChain的工具集 SQLDatabaseToolkit

如果你愿意深入看看源码,就知道这个工具集里有四个工具:
执行sql:QuerySQLDataBaseTool 
查看表详情:InfoSQLDatabaseTool
sql语法检查:QuerySQLCheckerTool
查看所有表:ListSQLDatabaseTool

from langchain_community.agent_toolkits import SQLDatabaseToolkit
from langchain_openai import ChatOpenAI
from sqlalchemy import create_engine
from langchain_community.utilities import SQLDatabase# 数据库连接信息
username = 'root'
password = 'MyNewPass1!'
host = 'desk04v.mlprod.bjpdc.qihoo.net'
port = '3306'
database = 'test'engine = create_engine(f'mysql+mysqlconnector://{username}:{password}@{host}:{port}/{database}')
db = SQLDatabase(engine)
toolkit = SQLDatabaseToolkit(db=db, llm=ChatOpenAI(temperature=0))
context = toolkit.get_context()
tools = toolkit.get_tools()

第二步:定义LLM节点,并加入到图中

让LLM绑定工具,一定要绑定,就像你需要告诉LLM,可以使用哪些工具,LLM才会生成调用计划

from typing import Annotatedfrom langchain_openai import ChatOpenAI
from typing_extensions import TypedDictfrom langgraph.graph import StateGraph
from langgraph.graph.message import add_messagesclass State(TypedDict):messages: Annotated[list, add_messages]graph_builder = StateGraph(State)# expt_llm = "gpt-4-1106-preview"
expt_llm = "gpt-4o"
llm = ChatOpenAI(temperature=0, model=expt_llm)
# Modification: tell the LLM which tools it can call
llm_with_tools = llm.bind_tools(tools)def chatbot(state: State):return {"messages": [llm_with_tools.invoke(state["messages"])]}graph_builder.add_node("chatbot", chatbot)

第三步:定义工具节点,并加入到图中

import jsonfrom langchain_core.messages import ToolMessageclass BasicToolNode:"""运行最后一个AIMessage中请求的工具"""def __init__(self, tools: list) -> None:self.tools_by_name = {tool.name: tool for tool in tools}def __call__(self, inputs: dict):if messages := inputs.get("messages", []):message = messages[-1]else:raise ValueError("No message found in input")outputs = []for tool_call in message.tool_calls:print(tool_call["name"])print(self.tools_by_name[tool_call["name"]])tool_result = self.tools_by_name[tool_call["name"]].invoke(tool_call["args"])outputs.append(ToolMessage(content=json.dumps(tool_result),name=tool_call["name"],tool_call_id=tool_call["id"],))return {"messages": outputs}tool_node = BasicToolNode(tools=tools)
graph_builder.add_node("tools", tool_node)

第四步:定义“边”

add_edge方法是直接定义“边”,在例子中表示tools -> chatbot

add_conditional_edges方法是增加条件路由“边”,在例子中表示chatbot根据情况 -> tools 或者 -> __end__

from typing import Literaldef route_tools(state: State,
) -> Literal["tools", "__end__"]:"""如果最后一条消息,在conditional_edge中使用路由到ToolNode,就调用工具。否则,路线到终点。"""if isinstance(state, list):ai_message = state[-1]elif messages := state.get("messages", []):ai_message = messages[-1]else:raise ValueError(f"在tool_edge的输入状态中没有找到消息: {state}")if hasattr(ai_message, "tool_calls") and len(ai_message.tool_calls) > 0:return "tools"return "__end__"# ' tools_condition '函数返回"tools",表示LLM要求使用工具,返回"__end__"直接结束。
graph_builder.add_conditional_edges("chatbot",route_tools,# The following dictionary lets you tell the graph to interpret the condition's outputs as a specific node# It defaults to the identity function, but if you# want to use a node named something else apart from "tools",# You can update the value of the dictionary to something else# e.g., "tools": "my_tools"{"tools": "tools", "__end__": "__end__"},
)
# 任何时候调用一个工具,我们都会流转到聊天机器人
graph_builder.add_edge("tools", "chatbot")
graph_builder.set_entry_point("chatbot")
graph = graph_builder.compile()

第五步:把图画出来(非必需)

from IPython.display import Image, displaytry:display(Image(graph.get_graph().draw_mermaid_png()))
except:# This requires some extra dependencies and is optionalpass

效果如下:

整个流程很简单,用大白话讲,就是:

把提问信息传给LLM,LLM决定用什么工具,然后graph就调用工具返回结果传给LLM,LLM拿到结果后有可能继续调用工具,也有可能直接输出答案,如此循环或者终止。

第六步:执行

通过流式调用,传入用户的提问

from langchain_core.messages import BaseMessagewhile True:user_input = input("User: ")if user_input.lower() in ["quit", "exit", "q"]:print("Goodbye!")breakfor event in graph.stream({"messages": [("user", user_input)]}):for value in event.values():if isinstance(value["messages"][-1], BaseMessage):print("Assistant:", value["messages"][-1].content)

效果如下:

User:  找到5月各地区的运费最贵的用户
Assistant: 
sql_db_list_tables
db=<langchain_community.utilities.sql_database.SQLDatabase object at 0x7fd64efb1f90>
Assistant: "arbitraments, courses, orders, scores, sink_chunjun_1, source_chunjun_1, students, test_binlog_1"
Assistant: 
sql_db_schema
description='Input to this tool is a comma-separated list of tables, output is the schema and sample rows for those tables. Be sure that the tables actually exist by calling sql_db_list_tables first! Example Input: table1, table2, table3' db=<langchain_community.utilities.sql_database.SQLDatabase object at 0x7fd64efb1f90>
Assistant: "\nCREATE TABLE orders (\n\torder_id INTEGER NOT NULL COMMENT '\u8ba2\u5355ID', \n\tcustomer_id VARCHAR(255) COMMENT '\u5ba2\u6237ID', \n\temployee_id INTEGER COMMENT '\u5458\u5de5ID', \n\torder_date DATE COMMENT '\u8ba2\u5355\u65e5\u671f', \n\trequired_date DATE COMMENT '\u8981\u6c42\u4ea4\u8d27\u65e5\u671f', \n\tshipped_date DATE COMMENT '\u53d1\u8d27\u65e5\u671f', \n\tshipper_id INTEGER COMMENT '\u53d1\u8d27\u65b9\u5f0f', \n\tfreight DECIMAL(10, 2) COMMENT '\u8fd0\u8d39', \n\tship_name VARCHAR(255) COMMENT '\u6536\u8d27\u4eba\u540d\u79f0', \n\tship_address VARCHAR(255) COMMENT '\u6536\u8d27\u5730\u5740', \n\tship_city VARCHAR(255) COMMENT '\u6536\u8d27\u57ce\u5e02', \n\tship_region VARCHAR(255) COMMENT '\u6536\u8d27\u5730\u533a', \n\tship_postal_code VARCHAR(255) COMMENT '\u6536\u8d27\u90ae\u7f16', \n\torder_status VARCHAR(50) COMMENT '\u8ba2\u5355\u72b6\u6001', \n\tsnapshot_timestamp TIMESTAMP NULL COMMENT '\u5feb\u7167\u65f6\u95f4\u6233' DEFAULT CURRENT_TIMESTAMP, \n\tPRIMARY KEY (order_id)\n)DEFAULT CHARSET=utf8mb4 COLLATE utf8mb4_0900_ai_ci ENGINE=InnoDB\n\n/*\n3 rows from orders table:\norder_id\tcustomer_id\temployee_id\torder_date\trequired_date\tshipped_date\tshipper_id\tfreight\tship_name\tship_address\tship_city\tship_region\tship_postal_code\torder_status\tsnapshot_timestamp\n1\tCUST001\t1\t2024-05-01\t2024-05-05\t2024-05-03\t1\t100.50\t\u5f20\u4e09\t\u5317\u4eac\u5e02\u671d\u9633\u533a\u5efa\u56fd\u8def100\u53f7\t\u5317\u4eac\t\u534e\u5317\t100022\t\u5df2\u53d1\u8d27\t2024-06-04 17:05:11\n2\tCUST002\t2\t2024-05-02\t2024-05-06\t2024-05-04\t2\t200.75\t\u674e\u56db\t\u4e0a\u6d77\u5e02\u6d66\u4e1c\u65b0\u533a\u4e16\u7eaa\u5927\u9053200\u53f7\t\u4e0a\u6d77\t\u534e\u4e1c\t200120\t\u5df2\u53d1\u8d27\t2024-06-04 17:05:11\n3\tCUST003\t3\t2024-05-03\t2024-05-07\t2024-05-05\t3\t150.00\t\u738b\u4e94\t\u5e7f\u5dde\u5e02\u5929\u6cb3\u533a\u4f53\u80b2\u897f\u8def300\u53f7\t\u5e7f\u5dde\t\u534e\u5357\t510620\t\u5df2\u53d1\u8d27\t2024-06-04 17:05:11\n*/"
Assistant: 
sql_db_query_checker
description='Use this tool to double check if your query is correct before executing it. Always use this tool before executing a query with sql_db_query!' db=<langchain_community.utilities.sql_database.SQLDatabase object at 0x7fd64efb1f90> llm=ChatOpenAI(client=<openai.resources.chat.completions.Completions object at 0x7fd64e081310>, async_client=<openai.resources.chat.completions.AsyncCompletions object at 0x7fd64e099350>, temperature=0.0, openai_api_key=SecretStr('**********'), openai_api_base='https://api.360.cn/v1', openai_proxy='') llm_chain=LLMChain(prompt=PromptTemplate(input_variables=['dialect', 'query'], template='\n{query}\nDouble check the {dialect} query above for common mistakes, including:\n- Using NOT IN with NULL values\n- Using UNION when UNION ALL should have been used\n- Using BETWEEN for exclusive ranges\n- Data type mismatch in predicates\n- Properly quoting identifiers\n- Using the correct number of arguments for functions\n- Casting to the correct data type\n- Using the proper columns for joins\n\nIf there are any of the above mistakes, rewrite the query. If there are no mistakes, just reproduce the original query.\n\nOutput the final SQL query only.\n\nSQL Query: '), llm=ChatOpenAI(client=<openai.resources.chat.completions.Completions object at 0x7fd64e081310>, async_client=<openai.resources.chat.completions.AsyncCompletions object at 0x7fd64e099350>, temperature=0.0, openai_api_key=SecretStr('**********'), openai_api_base='https://api.360.cn/v1', openai_proxy=''))
Assistant: "SELECT ship_region, customer_id, freight FROM orders \nWHERE MONTH(order_date) = 5 \nORDER BY freight DESC \nLIMIT 1;"
Assistant: 
sql_db_query
description="Input to this tool is a detailed and correct SQL query, output is a result from the database. If the query is not correct, an error message will be returned. If an error is returned, rewrite the query, check the query, and try again. If you encounter an issue with Unknown column 'xxxx' in 'field list', use sql_db_schema to query the correct table fields." db=<langchain_community.utilities.sql_database.SQLDatabase object at 0x7fd64efb1f90>
Assistant: "[('\u534e\u4e1c', 'CUST008', Decimal('300.80'))]"
Assistant: 在5月份各地区中,运费最贵的用户信息如下:- 地区:华东
- 用户ID:CUST008
- 运费:300.80元
User:  统计5月的每个地区的运费最贵的用户
Assistant: 
sql_db_list_tables
db=<langchain_community.utilities.sql_database.SQLDatabase object at 0x7fd64efb1f90>
Assistant: "arbitraments, courses, orders, scores, sink_chunjun_1, source_chunjun_1, students, test_binlog_1"
Assistant: 
sql_db_schema
description='Input to this tool is a comma-separated list of tables, output is the schema and sample rows for those tables. Be sure that the tables actually exist by calling sql_db_list_tables first! Example Input: table1, table2, table3' db=<langchain_community.utilities.sql_database.SQLDatabase object at 0x7fd64efb1f90>
Assistant: "\nCREATE TABLE orders (\n\torder_id INTEGER NOT NULL COMMENT '\u8ba2\u5355ID', \n\tcustomer_id VARCHAR(255) COMMENT '\u5ba2\u6237ID', \n\temployee_id INTEGER COMMENT '\u5458\u5de5ID', \n\torder_date DATE COMMENT '\u8ba2\u5355\u65e5\u671f', \n\trequired_date DATE COMMENT '\u8981\u6c42\u4ea4\u8d27\u65e5\u671f', \n\tshipped_date DATE COMMENT '\u53d1\u8d27\u65e5\u671f', \n\tshipper_id INTEGER COMMENT '\u53d1\u8d27\u65b9\u5f0f', \n\tfreight DECIMAL(10, 2) COMMENT '\u8fd0\u8d39', \n\tship_name VARCHAR(255) COMMENT '\u6536\u8d27\u4eba\u540d\u79f0', \n\tship_address VARCHAR(255) COMMENT '\u6536\u8d27\u5730\u5740', \n\tship_city VARCHAR(255) COMMENT '\u6536\u8d27\u57ce\u5e02', \n\tship_region VARCHAR(255) COMMENT '\u6536\u8d27\u5730\u533a', \n\tship_postal_code VARCHAR(255) COMMENT '\u6536\u8d27\u90ae\u7f16', \n\torder_status VARCHAR(50) COMMENT '\u8ba2\u5355\u72b6\u6001', \n\tsnapshot_timestamp TIMESTAMP NULL COMMENT '\u5feb\u7167\u65f6\u95f4\u6233' DEFAULT CURRENT_TIMESTAMP, \n\tPRIMARY KEY (order_id)\n)DEFAULT CHARSET=utf8mb4 COLLATE utf8mb4_0900_ai_ci ENGINE=InnoDB\n\n/*\n3 rows from orders table:\norder_id\tcustomer_id\temployee_id\torder_date\trequired_date\tshipped_date\tshipper_id\tfreight\tship_name\tship_address\tship_city\tship_region\tship_postal_code\torder_status\tsnapshot_timestamp\n1\tCUST001\t1\t2024-05-01\t2024-05-05\t2024-05-03\t1\t100.50\t\u5f20\u4e09\t\u5317\u4eac\u5e02\u671d\u9633\u533a\u5efa\u56fd\u8def100\u53f7\t\u5317\u4eac\t\u534e\u5317\t100022\t\u5df2\u53d1\u8d27\t2024-06-04 17:05:11\n2\tCUST002\t2\t2024-05-02\t2024-05-06\t2024-05-04\t2\t200.75\t\u674e\u56db\t\u4e0a\u6d77\u5e02\u6d66\u4e1c\u65b0\u533a\u4e16\u7eaa\u5927\u9053200\u53f7\t\u4e0a\u6d77\t\u534e\u4e1c\t200120\t\u5df2\u53d1\u8d27\t2024-06-04 17:05:11\n3\tCUST003\t3\t2024-05-03\t2024-05-07\t2024-05-05\t3\t150.00\t\u738b\u4e94\t\u5e7f\u5dde\u5e02\u5929\u6cb3\u533a\u4f53\u80b2\u897f\u8def300\u53f7\t\u5e7f\u5dde\t\u534e\u5357\t510620\t\u5df2\u53d1\u8d27\t2024-06-04 17:05:11\n*/"
Assistant: 
sql_db_query_checker
description='Use this tool to double check if your query is correct before executing it. Always use this tool before executing a query with sql_db_query!' db=<langchain_community.utilities.sql_database.SQLDatabase object at 0x7fd64efb1f90> llm=ChatOpenAI(client=<openai.resources.chat.completions.Completions object at 0x7fd64e081310>, async_client=<openai.resources.chat.completions.AsyncCompletions object at 0x7fd64e099350>, temperature=0.0, openai_api_key=SecretStr('**********'), openai_api_base='https://api.360.cn/v1', openai_proxy='') llm_chain=LLMChain(prompt=PromptTemplate(input_variables=['dialect', 'query'], template='\n{query}\nDouble check the {dialect} query above for common mistakes, including:\n- Using NOT IN with NULL values\n- Using UNION when UNION ALL should have been used\n- Using BETWEEN for exclusive ranges\n- Data type mismatch in predicates\n- Properly quoting identifiers\n- Using the correct number of arguments for functions\n- Casting to the correct data type\n- Using the proper columns for joins\n\nIf there are any of the above mistakes, rewrite the query. If there are no mistakes, just reproduce the original query.\n\nOutput the final SQL query only.\n\nSQL Query: '), llm=ChatOpenAI(client=<openai.resources.chat.completions.Completions object at 0x7fd64e081310>, async_client=<openai.resources.chat.completions.AsyncCompletions object at 0x7fd64e099350>, temperature=0.0, openai_api_key=SecretStr('**********'), openai_api_base='https://api.360.cn/v1', openai_proxy=''))
Assistant: "SELECT ship_region, customer_id, MAX(freight) as max_freight\nFROM orders\nWHERE order_date BETWEEN '2024-05-01' AND '2024-05-31'\nGROUP BY ship_region, customer_id"
Assistant: 
sql_db_query
description="Input to this tool is a detailed and correct SQL query, output is a result from the database. If the query is not correct, an error message will be returned. If an error is returned, rewrite the query, check the query, and try again. If you encounter an issue with Unknown column 'xxxx' in 'field list', use sql_db_schema to query the correct table fields." db=<langchain_community.utilities.sql_database.SQLDatabase object at 0x7fd64efb1f90>
Assistant: "[('\u534e\u5317', 'CUST001', Decimal('100.50')), ('\u534e\u4e1c', 'CUST002', Decimal('200.75')), ('\u534e\u5357', 'CUST003', Decimal('150.00')), ('\u534e\u5357', 'CUST004', Decimal('120.25')), ('\u897f\u5357', 'CUST005', Decimal('180.90')), ('\u897f\u5357', 'CUST006', Decimal('250.60')), ('\u534e\u4e1c', 'CUST007', Decimal('90.45')), ('\u534e\u4e1c', 'CUST008', Decimal('300.80')), ('\u534e\u4e2d', 'CUST009', Decimal('220.30')), ('\u897f\u5317', 'CUST010', Decimal('170.95'))]"
Assistant: 以下是5月每个地区运费最贵的用户:| 地区   | 客户ID  | 最大运费 (¥) |
|-------|--------|--------------|
| 华北   | CUST001 | 100.50       |
| 华东   | CUST008 | 300.80       |
| 华南   | CUST003 | 150.00       |
| 西南   | CUST006 | 250.60       |
| 华中   | CUST009 | 220.30       |
| 西北   | CUST010 | 170.95       |可以看到,每个地区的运费最高的用户及其对应的运费如上所示。
User:  q
Goodbye!

总结

不知道你有没有发现一个神奇的现象:

对于问题:找到5月各地区的运费最贵的用户

assistant生成的sql其实是错的

SELECT ship_region, customer_id, MAX(freight) as max_freight
FROM orders
WHERE order_date BETWEEN '2024-05-01' AND '2024-05-31'
GROUP BY ship_region, customer_id

这是我在Leetcode上找的一个中等难度的sql题

assistant生成的这个sql,执行的结果,应该会出现同一个地区有多个用户的情况,但是最后给我的输出答案确实对的。。。

原因是:chatgpt4o 耍诈,它没有能力生成这么复杂sql,但是可以写一个中间结果的sql,然后自己把结果处理一下再返回给我

这只是测试数据集,数据量比较小,如果在生产环境上,那就有问题了。

如何解决?

可以使用few-shot的方式优化

关于few-shot的调优,我单独写了一个博客,请移步:LangGraph开发Agent智能体应用【NL2SQL】(few-shot优化)-CSDN博客

参考

🦜🕸️LangGraph - LangGraph

LangChain开发LLM应用【入门指南】_langchain 开发社区-CSDN博客

LangGraph开发Agent智能体应用【基础聊天机器人】-CSDN博客

Introduction | 🦜️🔗 LangChain

代码已上传,按需下载,谢谢大家

这篇关于LangChain开发【NL2SQL】应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1039820

相关文章

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Python中对FFmpeg封装开发库FFmpy详解

《Python中对FFmpeg封装开发库FFmpy详解》:本文主要介绍Python中对FFmpeg封装开发库FFmpy,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、FFmpy简介与安装1.1 FFmpy概述1.2 安装方法二、FFmpy核心类与方法2.1 FF

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比

《CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比》CSS中的position属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布... css 中的 position 属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布局和层叠关

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

使用Python开发一个现代化屏幕取色器

《使用Python开发一个现代化屏幕取色器》在UI设计、网页开发等场景中,颜色拾取是高频需求,:本文主要介绍如何使用Python开发一个现代化屏幕取色器,有需要的小伙伴可以参考一下... 目录一、项目概述二、核心功能解析2.1 实时颜色追踪2.2 智能颜色显示三、效果展示四、实现步骤详解4.1 环境配置4.