RAG 查询检索模块 - 检索 - Pinecone 混合检索方案

2024-06-07 15:04

本文主要是介绍RAG 查询检索模块 - 检索 - Pinecone 混合检索方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

虽然向量检索有助于检索给定查询的语义相关块,但它有时在匹配特定关键字词方面缺乏准确性。

为了解决这个问题,混合检索是一种解决方案。该策略充分利用了矢量搜索和关键字搜索等不同检索技术的优势,并将它们智能地组合在一起。使用这种混合方法,您仍然可以匹配相关的关键字,同时保持对查询意图的控制。 混合搜索的案例,可以参考 Pinecone 的入门指南

Pinecone 混合检索方案

该博客讨论了混合搜索的概念和实现,混合搜索结合了矢量搜索(密集检索)和传统搜索方法的优势,以提高信息检索性能,尤其是在缺乏用于微调模型的特定领域数据的情况下。

  • 矢量搜索与传统搜索: 当使用特定领域的数据集对模型进行微调时,矢量搜索在检索相关信息方面表现出色。然而,由于缺乏经过微调的模型,矢量搜索在处理“域外”任务时显得力不从心。传统的搜索方法,如 BM25,可以处理新的领域,但在提供类似人类的智能检索方面能力有限。

混合搜索解决方案: 该博客介绍了一种将密集(向量)和稀疏(传统)搜索方法结合为混合搜索方法的解决方案。这种方法旨在利用矢量搜索的性能潜力,同时保持传统搜索对新领域的适应性。

实现过程

使用支持单一稀疏密集索引的 Pinecone 演示了混合搜索的实施。这种方法简化了结合密集和稀疏搜索引擎所需的工程设计工作,并允许通过 alpha 参数轻松调整密集和稀疏结果之间的权重。

在这里插入图片描述

步骤 1:数据集准备

本博客将介绍如何为混合搜索准备一个数据集(使用 Hugging Face Datasets 的 pubmed_qa 数据集),包括创建数据的密集和稀疏向量表示。

from datasets import load_dataset  # !pip install datasets
pubmed = load_dataset('pubmed_qa','pqa_labeled',split='train'
)
pubmed

数据格式如下所示:

Dataset({ features: ['pubid', 'question', 'context', 'long_answer', 'final_decision'], num_rows: 1000 })

步骤 2:稀疏向量

稀疏向量嵌入是通过标记化逻辑创建的,博客选择了一种使用 Hugging Face Transformers 的 BERT 标记化器的直接方法。

from transformers import BertTokenizerFast  # !pip install transformers# load bert tokenizer from huggingface
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased'
)
# tokenize the context passage
inputs = tokenizer(contexts[0], padding=True, truncation=True,max_length=512
)

由于我们只进行 tokenize,因此需要 input_ids,并将输入 ID 表示转换为整数 ID 值的唯一单词或子词 token。Pinecone 期望接收字典格式的稀疏向量。例如,向量:

[0, 2, 9, 2, 5, 5]
# 将会转换为
{ "0": 1, "2": 2, "5": 2, "9": 1 }

每个 token 由字典中的单个 key 表示,并且其频率由相应的 value 来计数。作者对 input_ids 应用相同的转换,如下所示:

from collections import Counter# convert the input_ids list to a dictionary of key to frequency values
sparse_vec = dict(Counter(input_ids))
sparse_vec
{101: 1, 16984: 1, 3526: 2, 2331: 2, 1006: 10, ... }

可以将所有这些逻辑重新格式化为两个函数:

  • build_dict:将输入 ID 转换为字典;
  • generate_sparse_vectors:处理标记化和字典创建。
def build_dict(input_batch):# store a batch of sparse embeddingssparse_emb = []# iterate through input batchfor token_ids in input_batch:indices = []values = []# convert the input_ids list to a dictionary of key to frequency valuesd = dict(Counter(token_ids))for idx in d:indices.append(idx)values.append(d[idx])sparse_emb.append({'indices': indices, 'values': values})# return sparse_emb listreturn sparse_embdef generate_sparse_vectors(context_batch):# create batch of input_idsinputs = tokenizer(context_batch, padding=True,truncation=True,max_length=512, special_tokens=False)['input_ids']# create sparse dictionariessparse_embeds = build_dict(inputs)return sparse_embeds

generate_sparse_vectors 函数中指定 special_tokens=False 来删除特殊 token 101、102、103和0。这些都是 BERT Transformer 模型明确要求的 token,但在构建稀疏向量时没有任何意义。

步骤 3:密集向量

密集向量嵌入使用 sentence transformer 模型(“multi-qa-MiniLM-L6-cos-v1”)生成,可为每个上下文生成 384 维密集向量。

# !pip install sentence-transformers
from sentence_transformers import SentenceTransformer# load a sentence transformer model from huggingface
model = SentenceTransformer('multi-qa-MiniLM-L6-cos-v1'
)emb = model.encode(contexts[0])
emb.shape

步骤 4:创建稀疏密集索引

该博客详细介绍了如何在 Pinecone 中创建和使用稀疏密集索引,包括使用稀疏向量和密集向量倒插数据。

import pinecone  # !pip install pinecone-clientpinecone.init(api_key="YOUR_API_KEY",  # app.pinecone.ioenvironment="YOUR_ENV"  # find next to api key in console
)
# choose a name for your index
index_name = "hybrid-search-intro"# create the index
pinecone.create_index(index_name = index_name,dimension = 384,  # dimensionality of dense modelmetric = "dotproduct",pod_type = "s1"
)

要使用启用稀疏-密集的索引,必须将 pod_type 设置为 s1 或 p1,并将 metric 设置为使用点积。

步骤 5:进行查询

混合搜索中的查询包括查询的密集向量和稀疏向量表示。该博客演示了如何执行查询和调整 alpha 参数,以平衡密集和稀疏搜索结果的影响。

在这里插入图片描述

def hybrid_scale(dense, sparse, alpha: float):# check alpha value is in rangeif alpha < 0 or alpha > 1:raise ValueError("Alpha must be between 0 and 1")# scale sparse and dense vectors to create hybrid search vecshsparse = {'indices': sparse['indices'],'values':  [v * (1 - alpha) for v in sparse['values']]}hdense = [v * alpha for v in dense]return hdense, hsparsedef hybrid_query(question, top_k, alpha):# convert the question into a sparse vectorsparse_vec = generate_sparse_vectors([question])[0]# convert the question into a dense vectordense_vec = model.encode([question]).tolist()# scale alpha with hybrid_scaledense_vec, sparse_vec = hybrid_scale(dense_vec, sparse_vec, alpha)# query pinecone with the query parametersresult = pinecone.query(vector=dense_vec,sparse_vector=sparse_vec[0],top_k=top_k,include_metadata=True)# return search results as jsonreturn result

文章结论

混合搜索通过与传统搜索方法相结合,为克服矢量搜索在域外场景中的局限性提供了一种很有前途的方法。这篇博客为实现混合搜索提供了全面的指导,通过智能地结合矢量和传统搜索方法,强调了混合搜索在改进各领域信息检索方面的潜力。

原始链接

https://www.pinecone.io/learn/hybrid-search-intro/

这篇关于RAG 查询检索模块 - 检索 - Pinecone 混合检索方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1039515

相关文章

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

前端缓存策略的自解方案全解析

《前端缓存策略的自解方案全解析》缓存从来都是前端的一个痛点,很多前端搞不清楚缓存到底是何物,:本文主要介绍前端缓存的自解方案,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、为什么“清缓存”成了技术圈的梗二、先给缓存“把个脉”:浏览器到底缓存了谁?三、设计思路:把“发版”做成“自愈”四、代码

解决docker目录内存不足扩容处理方案

《解决docker目录内存不足扩容处理方案》文章介绍了Docker存储目录迁移方法:因系统盘空间不足,需将Docker数据迁移到更大磁盘(如/home/docker),通过修改daemon.json配... 目录1、查看服务器所有磁盘的使用情况2、查看docker镜像和容器存储目录的空间大小3、停止dock

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S

Python sys模块的使用及说明

《Pythonsys模块的使用及说明》Pythonsys模块是核心工具,用于解释器交互与运行时控制,涵盖命令行参数处理、路径修改、强制退出、I/O重定向、系统信息获取等功能,适用于脚本开发与调试,需... 目录python sys 模块详解常用功能与代码示例获取命令行参数修改模块搜索路径强制退出程序标准输入

Python pickle模块的使用指南

《Pythonpickle模块的使用指南》Pythonpickle模块用于对象序列化与反序列化,支持dump/load方法及自定义类,需注意安全风险,建议在受控环境中使用,适用于模型持久化、缓存及跨... 目录python pickle 模块详解基本序列化与反序列化直接序列化为字节流自定义对象的序列化安全注

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

C#实现高性能拍照与水印添加功能完整方案

《C#实现高性能拍照与水印添加功能完整方案》在工业检测、质量追溯等应用场景中,经常需要对产品进行拍照并添加相关信息水印,本文将详细介绍如何使用C#实现一个高性能的拍照和水印添加功能,包含完整的代码实现... 目录1. 概述2. 功能架构设计3. 核心代码实现python3.1 主拍照方法3.2 安全HBIT

python pymodbus模块的具体使用

《pythonpymodbus模块的具体使用》pymodbus是一个Python实现的Modbus协议库,支持TCP和RTU通信模式,支持读写线圈、离散输入、保持寄存器等数据类型,具有一定的参考价值... 目录一、详解1、 基础概念2、核心功能3、安装与设置4、使用示例5、 高级特性6、注意事项二、代码示例