Hikyuu教程:简单波动率(EMV)择时交易系统的构建与实现

2024-06-07 13:36

本文主要是介绍Hikyuu教程:简单波动率(EMV)择时交易系统的构建与实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

今日,我们将探讨如何借助 hikyuu 框架实现简单波动指标 EMV 的择时系统。与以往稍有不同的是,本次我们将采用策略部件仓库的写法来完成示例代码,以便大家进一步了解和熟悉仓库的使用方法。

什么是简易波动指标(EMV)

首先,我们需要了解EMV指标的基本原理。简易波动指标(EMV),是为数不多的考虑价量关系的技术指标。在股价下跌的过程中,由于买盘力量的逐渐减弱,成交量会相应减少,进而导致EMV数值的下降。当股价跌至某一合理的支撑区域时,低价买入的订单会重新激活市场,使得成交量再度增加,此时EMV数值也会相应上升。当EMV数值由负转正并逐渐趋近于零时,这通常意味着有坚定的资金成功扭转了股价的下跌趋势,市场行情开始反转上扬,并发出新的买入信号。

关于EMV的计算方法,具体步骤如下:

  1. 计算MID值,MID = (TH + TL) / 2 - (YH + YL) / 2。其中,TH代表当天最高价,TL代表当天最低价,YH代表前日最高价,YL代表前日最低价。MID值大于零意味着当天的平均价格高于前日的平均价格。
  2. 计算BRO值,BRO = VOL / (H - L)。其中,VOL代表交易量,H和L分别代表同一天的最高价和最低价。
  3. 计算EM值,EM = MID / BRO。
  4. 计算EMV值,EMV为EM的N日简单移动平均值。

通过以上步骤,我们可以得到EMV指标的具体数值。

实现 EMV 指标

通过 shell 进入本地 hub 目录,输入如下代码: “python setup.py create -t ind -n emv”,如:
在这里插入图片描述

该命令将在 ind 目录下生成 part.py 和 test.py 两个文件,修改 part.py 来实现 EMV:
在这里插入图片描述

接着可以在 test.py 中进行测试,比如我们在其中绘制 emv 的曲线,如:
在这里插入图片描述

现在,可以直接在 ipython 中使用 emv,比如:

In [6]: s = sm['sh000001']
In [7]: k = s.get_kdata(Query(Datetime(20190101)))
In [8]: ind = get_part("start.ind.emv")
In [9]: ind(k).plot()

在这里插入图片描述

实现 EMV 择时系统

现在,我们使用 EMV 指标来实现一个择时系统:EMV 在0 以下表示弱势,在0 以上表示强势;EMV 由负转正应买进,由正转负应卖出。

同样,在 shell 中键入 “python setup.py create -t sys -n emv择时”,然后修改 part.py 文件:

def part(n: int = 14, tm: TradeManager = None) -> System:"""使用简易波动率指标(EMV)的交易系统。EMV 在0 以下表示弱势,在0 以上表示强势;EMV 由负转正应买进,由正转负应卖出。"""local_hub = get_current_hub(__file__)emv = get_part(f'{local_hub}.ind.emv', n=n)my_sg = SG_Bool(emv > 0, emv <= 0)my_tm = crtTM() if tm is None else tmmy_mm = MM_Nothing()my_sys = SYS_Simple(tm=my_tm, sg=my_sg, mm=my_mm)return my_sys

在 test.py 中,以平安银行为例,来测试这个择时系统策略:

from hikyuu.interactive import *
try:from .part import *
except:from part import *import sys
if sys.platform == 'win32':import osos.system('chcp 65001')if __name__ == "__main__":local_hub = get_current_hub(__file__)update_hub(local_hub)my_sys = get_part(f"{local_hub}.sys.emv择时")print(my_sys)if len(sys.argv) <= 1:import matplotlib.pylab as pltstk = sm['sz000001']my_sys.run(stk, Query(Datetime(20120101)))my_sys.performance()plt.show()

在这里插入图片描述

交易成本的影响

上面的测试中,已平仓交易总数166次,结合之前 EMV 指标图可以看到,这个系统的交易频次是比较高的。众所周知,交易频次越高交易成本的影响就越大,而上面默认创建的 TM 是使用的零成本进行的计算,那么让我们看看加入交易成本后,系统的盈利情况。

使用交易成本,只需要创建一个带有交易成本计算函数的 TM 实例并赋值给 SYS 即可,如下所示。

	my_tm = crtTM(Datetime(20120101), init_cash=100000,cost_func=TC_FixedA2017())my_sys.tm = my_tmmy_sys.run(stk, Query(Datetime(20120101)))my_sys.performance()

在这里插入图片描述
原本还有 0.98% 盈利的系统,现在直接亏到 -53%!

为什么使用 hub 的方式

hub 本质是一种规范的命名和组织方式,实际上使用 python 包和函数也是可以的。但规范的命名和组织会带来一些额外的方便,比如更好的文件目录拷贝粘贴修改,还有像下面这样,我们可以快速比较目前已经完成的 “趋势双均线、趋势布林带、emv择时”系统,下面的示例在 jupyter 中执行:

%matplotlib inline
%time from hikyuu.interactive import *# 定义回测时间
start_date = Datetime(20200101)
end_date = Datetime(20240501)
query = Query(start_date, end_date)# 指定分析对象
stk = sm['sh510050']
k = stk.get_kdata(Query(start_date, end_date))# 定义回测账户,并指定成本算法
my_tm = crtTM(start_date, init_cash=100000, cost_func=TC_FixedA2017())for name in ('趋势双均线', '趋势布林带', 'emv择时'):my_sys = get_part(f"start.sys.{name}")my_sys.tm = my_tmmy_sys.run(stk, query)my_sys.performance()

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这篇关于Hikyuu教程:简单波动率(EMV)择时交易系统的构建与实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1039320

相关文章

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

Java实现删除文件中的指定内容

《Java实现删除文件中的指定内容》在日常开发中,经常需要对文本文件进行批量处理,其中,删除文件中指定内容是最常见的需求之一,下面我们就来看看如何使用java实现删除文件中的指定内容吧... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细介绍3.1 Ja

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1