Signac|成年小鼠大脑 单细胞ATAC分析(1)

2024-06-07 06:36

本文主要是介绍Signac|成年小鼠大脑 单细胞ATAC分析(1),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

在本教程中,我们将探讨由10x Genomics公司提供的成年小鼠大脑细胞的单细胞ATAC-seq数据集。本教程中使用的所有相关文件均可在10x Genomics官方网站上获取。

本教程复现了之前在人类外周血单核细胞(PBMC)的Signac入门教程中执行的命令。我们通过在不同的系统上进行相同的分析,来展示其性能以及对不同组织类型的适用性,并提供了一个来自不同物种的示例。

实战

首先,我们需要导入Signac、Seurat等一些用于分析小鼠数据的软件包。

library(Signac)
library(Seurat)
library(EnsDb.Mmusculus.v79)

library(ggplot2)
library(patchwork)

预处理工作流程

counts <- Read10X_h5("../vignette_data/atac_v1_adult_brain_fresh_5k_filtered_peak_bc_matrix.h5")
metadata <- read.csv(
  file = "../vignette_data/atac_v1_adult_brain_fresh_5k_singlecell.csv",
  header = TRUE,
  row.names = 1
)

brain_assay <- CreateChromatinAssay(
  counts = counts,
  sep = c(":""-"),
  genome = "mm10",
  fragments = '../vignette_data/atac_v1_adult_brain_fresh_5k_fragments.tsv.gz',
  min.cells = 1
)

brain <- CreateSeuratObject(
  counts = brain_assay,
  assay = 'peaks',
  project = 'ATAC',
  meta.data = metadata
)

我们还可以向小鼠基因组的大脑对象添加基因注释。这将允许下游函数直接从对象中提取基因注释信息。

# extract gene annotations from EnsDb
annotations <- GetGRangesFromEnsDb(ensdb = EnsDb.Mmusculus.v79)

# change to UCSC style since the data was mapped to hg19
seqlevels(annotations) <- paste0('chr', seqlevels(annotations))
genome(annotations) <- "mm10"

# add the gene information to the object
Annotation(brain) <- annotations

计算 QC 指标

接下来我们计算一些有用的细胞 QC 指标。

brain <- NucleosomeSignal(object = brain)

我们可以分析所有细胞的DNA片段长度的周期性变化,并根据细胞核小体信号的强弱进行分类。观察结果表明,那些在单核小体与无核小体比例上表现异常的细胞,呈现出与其他细胞不同的条带图谱。而其他细胞则显示出了一次成功的ATAC-seq实验所特有的典型模式。

brain$nucleosome_group <- ifelse(brain$nucleosome_signal > 4'NS > 4''NS < 4')
FragmentHistogram(object = brain, group.by = 'nucleosome_group', region = 'chr1-1-10000000')
alt

在ATAC-seq实验中,Tn5转座酶在转录起始位点(TSS)处的整合事件的富集程度,是一个关键的质量控制指标,用于评价Tn5的定位效率。ENCODE联盟将TSS富集分数定义为TSS周围Tn5整合位点的计数与这些位点在相邻区域计数的比率。在Signac软件包中,我们可以使用TSSEnrichment()函数来为每个细胞计算这一富集分数。

brain <- TSSEnrichment(brain, fast = FALSE)

brain$high.tss <- ifelse(brain$TSS.enrichment > 2'High''Low')
TSSPlot(brain, group.by = 'high.tss') + NoLegend()
alt
brain$pct_reads_in_peaks <- brain$peak_region_fragments / brain$passed_filters * 100
brain$blacklist_ratio <- brain$blacklist_region_fragments / brain$peak_region_fragments

VlnPlot(
  object = brain,
  features = c('pct_reads_in_peaks''peak_region_fragments',
               'TSS.enrichment''blacklist_ratio''nucleosome_signal'),
  pt.size = 0.1,
  ncol = 5
)
alt

我们删除了这些 QC 指标异常值的细胞。

brain <- subset(
  x = brain,
  subset = peak_region_fragments > 3000 &
    peak_region_fragments < 100000 &
    pct_reads_in_peaks > 40 &
    blacklist_ratio < 0.025 &
    nucleosome_signal < 4 &
    TSS.enrichment > 2
)
brain

## An object of class Seurat 
## 157203 features across 3512 samples within 1 assay 
## Active assay: peaks (157203 features, 0 variable features)
##  2 layers present: counts, data

归一化和线性降维

brain <- RunTFIDF(brain)
brain <- FindTopFeatures(brain, min.cutoff = 'q0')
brain <- RunSVD(object = brain)

在分析中,LSI(线性判别分析)的第一个主成分往往反映的是测序的深度(即技术层面的变异),而非生物学上的变异。如果确实如此,那么在后续的分析中应该将这一成分排除掉。为了判断是否存在这种情况,我们可以通过调用DepthCor()函数来计算每个LSI主成分与测序深度之间的相关性。

DepthCor(brain)
alt

在这里,我们看到第一个 LSI 组件与细胞的计数总数之间存在非常强的相关性,因此我们将在没有该组件的情况下执行下游步骤。

非线性降维和聚类

细胞数据已经被嵌入到一个低维度的空间里,我们可以采用单细胞RNA测序(scRNA-seq)数据常用的分析方法,执行基于图谱的聚类分析,并通过非线性降维技术来进行数据可视化。RunUMAP()、FindNeighbors()和FindClusters()这些功能均集成在Seurat软件包中。

brain <- RunUMAP(
  object = brain,
  reduction = 'lsi',
  dims = 2:30
)
brain <- FindNeighbors(
  object = brain,
  reduction = 'lsi',
  dims = 2:30
)
brain <- FindClusters(
  object = brain,
  algorithm = 3,
  resolution = 1.2,
  verbose = FALSE
)

DimPlot(object = brain, label = TRUE) + NoLegend()
alt

本文由 mdnice 多平台发布

这篇关于Signac|成年小鼠大脑 单细胞ATAC分析(1)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1038412

相关文章

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1