Nyoj 302 星际旅行[矩阵乘法求两点k步方案数]

2024-06-07 03:38

本文主要是介绍Nyoj 302 星际旅行[矩阵乘法求两点k步方案数],希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=302

题目意思。。n*m的矩阵。。每个元素代表一个星球,每个元素的值为所属国家,也就是每个星球属于一个国家。。每个相邻(上下左右)的星球有一个航道。每个国家的任意的两个星球都有星际之门。。。。。问,从(1,1)星球到(n,m)星球的方案数。。。相同的方案为走过的星球顺序相同。。。。。

处理一下图就是很裸的问题。。。

处理图的方式有很多中。。。

我的方法为,把二维矩阵散列到一维上。。然后,两两判断是否有通路。。然后处理到邻接矩阵中。。。。直接矩阵乘法就好。。。

Code:

 
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
#define LL long long
const int N = 105;
const LL mod = 1000007;
struct Matrix
{int n;LL a[N][N];Matrix(){memset(a, 0, sizeof(a));}
} ans, A;
int node[N], n;
int m, p;bool Judge(int x, int y)
{if(x - n == y) return true;else if(x + n == y) return true;else if(x - 1 == y && y % n != 0) return true;else if(x + 1 == y && x % n != 0) return true;else return false;
}Matrix operator * (Matrix a, Matrix b)
{Matrix tmpans;tmpans.n = a.n;for(int i = 1; i <= a.n; i ++){for(int j = 1; j <= a.n; j ++){for(int k = 1; k <= a.n; k ++)tmpans.a[i][j] = (tmpans.a[i][j] + a.a[i][k] * b.a[k][j]) % mod;
//            printf("k = %d\n", tmpans.a[i][j]);}}return tmpans;
}void power(int k)
{while(k){if(k & 1) ans = ans * A;A = A * A;k = k >> 1;}
}int main()
{
//    freopen("1.txt", "r", stdin);int T;cin >> T;while(T --){cin >> n >> m >> p;for(int i = 0; i < m; i ++){for(int j = 1; j <= n; j ++){cin >> node[i * n + j];}}for(int i = 1; i <= m * n; i ++){for(int j = 1; j <= m * n; j ++){A.a[i][j] = 0; ans.a[i][j] = 0;if(i == j) continue;if(node[i] == node[j]) A.a[i][j] = 1;else if(Judge(i, j)){A.a[i][j] = 1;}}ans.a[i][i] = 1;}ans.n = n * m; A.n = n * m;power(p);printf("%lld\n", ans.a[1][n * m] % mod);}return 0;
}

表示NYOJ上关于矩阵的题目数据的还是很强大的。。。。

这篇关于Nyoj 302 星际旅行[矩阵乘法求两点k步方案数]的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1038071

相关文章

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

防止Linux rm命令误操作的多场景防护方案与实践

《防止Linuxrm命令误操作的多场景防护方案与实践》在Linux系统中,rm命令是删除文件和目录的高效工具,但一旦误操作,如执行rm-rf/或rm-rf/*,极易导致系统数据灾难,本文针对不同场景... 目录引言理解 rm 命令及误操作风险rm 命令基础常见误操作案例防护方案使用 rm编程 别名及安全删除

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

MySQL容灾备份的实现方案

《MySQL容灾备份的实现方案》进行MySQL的容灾备份是确保数据安全和业务连续性的关键步骤,容灾备份可以分为本地备份和远程备份,主要包括逻辑备份和物理备份两种方式,下面就来具体介绍一下... 目录一、逻辑备份1. 使用mysqldump进行逻辑备份1.1 全库备份1.2 单库备份1.3 单表备份2. 恢复

redis中session会话共享的三种方案

《redis中session会话共享的三种方案》本文探讨了分布式系统中Session共享的三种解决方案,包括粘性会话、Session复制以及基于Redis的集中存储,具有一定的参考价值,感兴趣的可以了... 目录三种解决方案粘性会话(Sticky Sessions)Session复制Redis统一存储Spr

SpringBoot实现虚拟线程的方案

《SpringBoot实现虚拟线程的方案》Java19引入虚拟线程,本文就来介绍一下SpringBoot实现虚拟线程的方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录什么是虚拟线程虚拟线程和普通线程的区别SpringBoot使用虚拟线程配置@Async性能对比H

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3